Autonomous stabilization of an entangled state of two transmon qubits

Shyam Shankar

Department of Applied Physics, Yale University

Zaki Leghtas Michael Hatridge Uri Vool
Anirudh Narla Katrina Sliwa Steve Girvin
Luigi Frunzio Mazyar Mirrahimi Michel Devoret

Acknowledgements: Rob Schoelkopf and RSL members, Michael Rooks and YINQE
“back-action” : in general, measuring the state of a quantum system can perturb it.
“back-action”: in general, measuring the state of a quantum system can perturb it.

Challenge ➔ design feedback such that back-action absent when in desired state.
Resources for quantum computing

Qubit: two level quantum system

\[|g\rangle, |e\rangle \]

System state: \[|\psi\rangle \]

\[|\psi\rangle = \frac{1}{\sqrt{2}} (|g\rangle + |e\rangle) \]

\[\langle Z \rangle = 0, \langle X \rangle = 1 \]

Measure Z \(\Rightarrow\) back-action randomly gives +1 or -1, average = 0

Measure X \(\Rightarrow\) No back-action, X = +1 always
Resources for quantum computing

2-qubit system

|ψ⟩ = \frac{1}{\sqrt{2}}(|ge⟩ - |eg⟩)

⟨Z_A⟩ = ⟨Z_B⟩ = 0, ⟨Z_AZ_B⟩ = −1
⟨X_A⟩ = ⟨X_B⟩ = 0, ⟨X_AX_B⟩ = −1

Measure individual qubits \(\Rightarrow\) back-action gives +1 or -1 randomly

Measure joint parity \(\Rightarrow\) no back-action, parity = -1 always
Challenges: decoherence

Environmental noise

\[|g\rangle + |e\rangle \]
\[\frac{|g\rangle - |e\rangle}{\sqrt{2}} \]

Relaxation: \(T_1 \)

Dephasing: \(T_\phi \)
Challenges: decoherence

Environmental noise

\[|e\rangle \quad \rightarrow \quad |g\rangle \]

Relaxation: \(T_1 \)

\[
\frac{|g\rangle + |e\rangle}{\sqrt{2}} \quad \rightarrow \quad \frac{|g\rangle - |e\rangle}{\sqrt{2}}
\]

Dephasing: \(T_\phi \)

Solution: Quantum feedback

\(\Rightarrow \) maintain superposition/entanglement against decoherence
Circuit QED architecture

T \sim 20 \text{ mK}

3D microwave rectangular cavity
10 \text{ mm}

Superconducting transmon qubit

Josephson junction

200 \mu m

200 \text{ nm}
Superconducting transmon qubit

Josephson junction with shunting capacitor → anharmonic oscillator

\[\phi = \int V dt \]

\[L = \frac{L_J}{\cos(\phi/\phi_0)}, \quad \phi_0 = \frac{\hbar}{2e} \]

Qubit frequency $\sim 4 – 10$ GHz, $T_1, T_\phi \sim 10 – 100$ µs

How do we measure the qubit: dispersive readout

\[\theta = 2 \tan^{-1} \left(\chi / \kappa \right) \]

"Quantum non-demolition" measurement of Z

\Rightarrow No back-action if state is $|g\rangle$ or $|e\rangle$

Multiple single-qubit feedback experiments: ENS, Berkeley, Delft, Yale, ETH
Autonomous stabilization of Bell state $|\phi_-\rangle = \{|ge\rangle - |eg\rangle\}/\sqrt{2}$

Z. Lehtas et al., PRA (2013)

- 2 individually addressable transmons in one cavity
- Almost equal and large dispersive shifts ($\chi_{Alice} \sim \chi_{Bob} > \kappa$)
- Autonomous \Rightarrow No external controller
Why $\chi_{Alice} \sim \chi_{Bob}$: quasi-parity measurement

- Distinguish even and odd parity
- No back-action if state is $|\phi_-\rangle = \{|ge\rangle - |eg\rangle\}/\sqrt{2}$
Autonomous stabilization of Bell state $|\phi_-\rangle = \{|ge\rangle - |eg\rangle\}/\sqrt{2}$
Autonomous stabilization of Bell state $|\phi_-\rangle = \{|ge\rangle - |eg\rangle\}/\sqrt{2}$

- Select even parity: $|gg, 0\rangle$, $|ee, 0\rangle$
pumped to n photon manifold
 – cavity drives with average \bar{n} photons ($n \sim \bar{n}$)
Autonomous stabilization of Bell state $|\phi_-\rangle = \{|ge\rangle - |eg\rangle\}/\sqrt{2}$

- Select even parity: $|gg, 0\rangle$, $|ee, 0\rangle$ pumped to n photon manifold – cavity drives with average \bar{n} photons ($n \sim \bar{n}$)
Autonomous stabilization of Bell state $|\phi_-\rangle = \{|ge\rangle - |eg\rangle\}/\sqrt{2}$

- Select even parity
- Select Bell state: $|\phi_+, 0\rangle$ pumped to n photon manifold
 - by phase of drives
Autonomous stabilization of Bell state $|\phi_-\rangle = \{|ge\rangle - |eg\rangle\}/\sqrt{2}$

- Select even parity
- Select Bell state: $|\phi_+, 0\rangle$ pumped to n photon manifold
 - by phase of drives
Autonomous stabilization of Bell state $|\phi_-\rangle = \{|ge\rangle - |eg\rangle\}/\sqrt{2}$

- Select even parity
- Select Bell state
- Pump $|gg, n\rangle$, $|ee, n\rangle$ into $|\phi_-, n\rangle$
 - one drive phase π shifted
Autonomous stabilization of Bell state \(|\phi_-\rangle = \{|ge\rangle - |eg\rangle\}/\sqrt{2} \)

- Select even parity
- Select Bell state
- Pump \(|gg, n\rangle, |ee, n\rangle\) into \(|\phi_-, n\rangle\)
 - one drive phase \(\pi\) shifted
Autonomous stabilization of Bell state $|\phi_-\rangle = \{|ge\rangle - |eg\rangle\}/\sqrt{2}$

- Select even parity
- Select Bell state
- Pump $|gg, n\rangle, |ee, n\rangle$ into $|\phi_, n\rangle$
- Cavity relaxes irreversibly to $|\phi_-, 0\rangle$ – rate κ
Autonomous stabilization of Bell state $|\phi_-\rangle = \{|ge\rangle - |eg\rangle\}/\sqrt{2}$

Quasi-parity measurement

Conditional Rabi drives
System-reservoir characteristics

Cavity transmission

\[\chi_{\text{Alice}}/2\pi = 6.5 \text{ MHz} \]
\[\chi_{\text{Bob}}/2\pi = 5.9 \text{ MHz} \]
\[\kappa/2\pi = 1.7 \text{ MHz} \]

<table>
<thead>
<tr>
<th></th>
<th>Qubit frequency (GHz)</th>
<th>(T_1) ((\mu s))</th>
<th>(T_\phi) ((\mu s))</th>
<th>(\kappa T_1)</th>
<th>(\kappa T_\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>5.238</td>
<td>16</td>
<td>11</td>
<td>170</td>
<td>120</td>
</tr>
<tr>
<td>Bob</td>
<td>6.304</td>
<td>9</td>
<td>36</td>
<td>100</td>
<td>380</td>
</tr>
</tbody>
</table>

Achieve \(\kappa T_1, \kappa T_\phi > 100 \)

Experiment protocol

Stabilization drives ON

Two qubit tomography

Measure 15-component Pauli vector

Stabilization time \(T_S \) = 500 ns

\[|gg\rangle \quad |\phi_-\rangle \]

\(T_S = 0 \)

\(T_S \gg 10 \kappa^{-1} \)

\[\text{IZ} \quad \text{ZI} \quad \text{ZZ} \]

Increasing \(T_S \)...
Tomography results vs T_S

Converges to $|\phi_-\rangle$
Tomography results vs T_S

- $\langle ZZ \rangle$
- $\langle XX \rangle$
- $\langle YY \rangle$
- $\langle ZI \rangle$
- $\langle IZ \rangle$

Converges to $|\phi_-\rangle$

And remains stable much longer than T_1, T_ϕ
Fidelity to Bell state

Exponential rise, $\tau = 960$ ns $\sim 10\kappa^{-1}$

- Improved to 77 % by monitoring cavity output
- Expect above 90 % in future version with improved T_1

Thank you