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Abstract

Three-wave Mixing in Superconducting Circuits:

Stabilizing Cats with SNAILs

Nicholas E. Fra ini

2021

Three-wave mixing, by which a photon splits into two correlated photons and vice versa, is

a powerful quantum process with many applications in fundamental quantum mechanics

experiments and quantum information processing. However, in superconducting circuits,

the predominant form of nonlinearity provided by a Josephson junction is only of even

order, and thus symmetry forbids three-wave mixing. This Kerr nonlinearity is useful in

its own right for engineering quantum operations, but it is accompanied by unavoidable

frequency shifts that become especially problematic as the number of interacting electro-

magnetic modes, and therefore frequency crowding, increases. How then can we endow

superconducting devices with the necessary nonlinearity to perform three-wave mixing?

In this thesis, we introduce a simple and compact way to add three-wave-mixing ca-

pabilities to a superconducting circuit: the superconducting nonlinear inductive element

(SNAIL). Additionally, we optimize these devices for quantum-coherent three-wave mix-

ing applications. The many orders of magnitude over which circuit nonlinearities may be

designed allow a rich space for different behaviors. We focus on three-wave mixing for

single-mode squeezing in two distinct contexts: quantum-noise-limited parametric ampli-

fication, and protection of quantum information in a Schrödinger cat qubit. The former

showcases the capability to design three-wave-mixing processes free of residual Kerr non-

linearity; the la er explicitly includes Kerr nonlinearity to protect quantum information

from decoherence and quickly manipulate it. Both applications indicate the importance of

three-wave mixing in quantum information contexts and for the exploration of fundamen-

tal quantum effects.



Three-wave Mixing in Superconducting Circuits:

Stabilizing Cats with SNAILs

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Nicholas E. Fra ini

Dissertation Director: Michel H. Devoret

December 2021



© 2021 by Nicholas E. Frattini
All rights reserved.



Contents

List of Figures iv

List of Tables v

List of Symbols vi

Acknowledgements xiii

1 Introduction 1
1.1 Three-wave mixing in superconducting circuits . . . . . . . . . . . . . . . . . 2
1.2 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 3-wave mixing with SNAILs 4
2.1 Meet the SNAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The simplest case: 1 nonlinear mode . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Reducing the Lagrangian to one coordinate . . . . . . . . . . . . . . 9
2.2.2 Taylor expanding the potential . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Arrays of SNAILs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Renormalization of Kerr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Black-box quantization with SNAILs . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Foster decomposition of the environment . . . . . . . . . . . . . . . . 31
2.5.2 Incorporating a high frequency cutoff . . . . . . . . . . . . . . . . . . 33
2.5.3 Renormalizing the nonlinearity . . . . . . . . . . . . . . . . . . . . . . 35
2.5.4 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Quantum-limited parametric amplification 39
3.1 Requirements for first amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Ideal degenerate parametric amplifier (DPA) . . . . . . . . . . . . . . . . . . 41

3.2.1 Input-output theory in the RWA . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Gain of a DPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 The SNAIL parametric amplifier (SPA) . . . . . . . . . . . . . . . . . . . . . . 46
3.3.1 SPA physical realization . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 SPA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.3 SPA Hamiltonian characteristics . . . . . . . . . . . . . . . . . . . . . 53
3.3.4 SPA dynamic range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Design optimization principles . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 The Kerr-cat qubit 67
4.1 Two-legged Schrödinger cat code . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 The need for stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Stabilizing 1 coherent state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 Stabilizing 2 coherent states: the Kerr cat . . . . . . . . . . . . . . . . . . . 76
4.5 The quantum solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6 Including detuning and single-photon loss . . . . . . . . . . . . . . . . . . . 81

i



4.7 Multi-stability regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.8 Robustness of the bi-stable regime: home for cats . . . . . . . . . . . . . . 86

4.8.1 Eigenstate perturbations . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Realization of a Kerr-cat qubit 90
5.1 Single qubit implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Proof of cat by Rabi oscillations . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3 Single qubit gate fidelities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Continuous gate between cats . . . . . . . . . . . . . . . . . . . . . . 97
5.3.2 Discrete gate by free Kerr evolution . . . . . . . . . . . . . . . . . . . 97

5.4 Cat-quadrature readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4.1 CQR model as conditional displacement . . . . . . . . . . . . . . . . 99
5.4.2 CQR experimental verification . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Kerr-cat coherences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Future directions for Kerr-cat qubits 109
6.1 Less Kerr for larger cats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1.1 Eigenstate pairing in Kerr-cats . . . . . . . . . . . . . . . . . . . . . . 112
6.1.2 Longer coherence with larger cats . . . . . . . . . . . . . . . . . . . . 114
6.1.3 Quantum jumps with CQR . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Topological CNOT between two Kerr-cat qubits . . . . . . . . . . . . . . . . . 118
6.2.1 Topological coherent state exchange . . . . . . . . . . . . . . . . . . 118
6.2.2 Exchange conditioned on a second cat: the CNOT . . . . . . . . . . . 119

7 Conclusions 123

Appendices 125

A The SPA beyond the RWA 125
A.1 Quantum Langevin equation (QLE) beyond the RWA . . . . . . . . . . . . . . 125

A.1.1 Linear oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.1.2 Weakly nonlinear oscillator . . . . . . . . . . . . . . . . . . . . . . . . 126

A.2 QLE including arbitrary coupling circuit . . . . . . . . . . . . . . . . . . . . . 126
A.3 Distributed-element model of the SPA . . . . . . . . . . . . . . . . . . . . . . 127
A.4 Harmonic balance including period-doubling . . . . . . . . . . . . . . . . . . 129

A.4.1 Gain of the SPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
A.4.2 Period doubling multi-stability . . . . . . . . . . . . . . . . . . . . . . 131

B Master equations and effective Hamiltonians 134
B.1 Master equations in Lindblad form . . . . . . . . . . . . . . . . . . . . . . . . 134
B.2 Wigner function evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
B.2.2 Fokker-Planck equations . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.3 Some common dissipators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
B.3.1 One-photon loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
B.3.2 One-photon gain and loss . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.3.3 Two-photon loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.3.4 Dephasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

ii



References 139

iii



List of Figures

1.1 Three-wave-mixing circuit elements . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 SNAIL introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Lumped-element model with SNAIL array . . . . . . . . . . . . . . . . . . . . 11
2.3 Arraying Josephson junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Kerr renormalization in 2-mode circuit . . . . . . . . . . . . . . . . . . . . . 25
2.5 BBQ with SNAILs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Degenerate parametric amplifier gain . . . . . . . . . . . . . . . . . . . . . . 44
3.2 SPA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 SPA frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 SPA cubic nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Measuring Kerr with Stark shift . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6 Compression power across SPAs . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7 SPA intermodulation distortion . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Two-legged cat qubit Bloch sphere . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Kerr-cat stabilization in phase space . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Kerr-cat eigenstate pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4 Stability diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Kerr-cat qubit implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Rabi oscillations of a Kerr-cat qubit . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Gate process tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 Cat-quadrature readout (CQR) . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5 Kerr-cat qubit coherence times . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1 Kerr-cat excited state spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 113
6.2 Coherence of larger cats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3 Breaking 1 ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4 Quantum jumps with CQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

iv



List of Tables

3.1 Summary of SPA device physical characteristics . . . . . . . . . . . . . . . . 49
3.2 SPA linear and nonlinear parameters . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Oscillator operators within cat subspace . . . . . . . . . . . . . . . . . . . . 71

v



List of Symbols
Acronyms

AC alternating current (ω > 0)

BBQ black-box quantization

cQED circuit quantum electrodynamics

CQR cat-quadrature readout

DC direct current (ω = 0)

FQ Fock qubit

HEMT high-electron-mobility transistor

JJ Josephson junction

JPC Josephson parametric converter

JRM Josephson ring modulator

KC Kerr cat

QEC quantum error correction

QED quantum electrodynamics

QLE quantum Langevin equation

QND quantum non-demolition

RF radio-frequency

SLUG superconducting low-inductance undulatory galvanometer

SNR signal-to-noise ratio

SNAIL superconducting nonlinear asymmetric inductive element

SPA SNAIL parametric amplifier

SPAM state preparation and measurement

SQUID superconducting quantum interference device

vi



Constants
h Planck's constant

h̄ reduced Planck's constant (= h/2π)

e charge of an electron

c speed of light

Φ0 magnetic flux quantum (= h/2e)

φ0 reduced magnetic flux quantum (= h̄/2e)

kB Boltzmann constant

3-wave mixing with SNAILs

φs
superconducting phase difference across a SNAIL's small
junction

EJ Josephson tunnelling energy

LJ Josephson inductance (= φ2
0/EJ )

n number of large Josephson junctions in a SNAIL

α ratio of small and large junction tunnelling energies

Φ externally applied magnetic flux bias

φext externally applied magnetic phase (= 2πΦ/Φ0)

US(φs) SNAIL potential energy

IS(φs) SNAIL current-phase relation

EC
Coulomb charging energy associated with a capacitance C (=
e2/2C)

CJ junction capacitance intrinsic to the junction's construction

C0
capacitance to ground of each island between arrayed junc-
tions

ΩJ junction plasma frequency (=
√
8EJEC/h̄)

φs,min phase that minimizes SNAIL potential US(φs)

ck Taylor expansion coefficients of US

φ̃s
canonical phase centered about the minimum of US (= φs −
φs,min)

US,eff(φ̃s) effective Taylor-expanded SNAIL potential

M number of SNAILs arrayed in series

L inductance of ideal linear inductor

EL inductive energy associated with inductance L (= φ2
0/L)

C capacitance of ideal linear capacitor

vii



Ls
effective flux-dependent linear inductance of a SNAIL (=
LJ/c2)

LM+1 Langrangian for circuit with M + 1 canonical coordinates

UM+1 potential energy of Lagrangian LM+1

φ canonical branch phase across the capacitor C

φs,m branch phase across the small junction of SNAIL m

L2 Langrangian for circuit with 2 canonical coordinates

U2 potential energy of Lagrangian L2

xJ junction-to-linear inductance ratio (= LJ/L = EL/EJ )

L1 Langrangian for circuit reduced to 1 canonical coordinate

U1 potential energy of Lagrangian L1

φ̄min φ that minimizes potential U1

c̃k Taylor expansion coefficients of U1

p SNAIL array's inductive participation ratio (= MLs/(L+MLs))

H1 one degree of freedom Hamiltonian associated with L1

N Cooper pair number conjugate to φ

φzpf zero-point fluctuations of the phase (= (2EC/c̃2EJ)
1/4)

Nzpf zero-point fluctuations of the Cooper pair number (= 1/2φzpf)

ωa lab-frame oscillator frequency

gk nonlinear Hamiltonian term of order k (= c̃kEJ(φzpf)
k/h̄k!)

ncrit critical photon number

∆a Lamb shift

K Kerr nonlinearity

K ′ effective sixth-order nonlinearity

BBQ with SNAILs

Cs shunting capacitance of a single SNAIL

Ωs plasma frequency of a SNAIL (= 1/
√
LsCs)

UNL(φ̃s) nonlinear part of SNAIL potential US

ZNL[s] impedance environment that the nonlinearity sees

ω± poles of ZNL[s]

Z± residues of ZNL[s] at poles ω±

L± effective inductance associated with the pole (= Z±/ω±)

C± effective capacitance associated with the pole (= 1/ω±Z±)

φ± canonical branch phase across L±

viii



H2 Hamiltonian of two mode circuit

φ±,zpf zero-point fluctuations of the canonical branch phases

HNL nonlinear part of H2

Cp, Lp, Rp
capacitance, inductance, and resistance associated with pole
p

ωp, Zp, Qp frequency, impedance, and quality factor of pole p

P total number of complex pairs of poles

Ωmax high frequency cutoff

Pmax total number of poles with ωp < Ωmax

Z̃NL[s] impedance seen by renormalized nonlinear dipole
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1
Introduction
Three-wave mixing, by which a photon can be split into two correlated photons and vice
versa, is a powerful quantum process with many applications in fundamental quantum
mechanics experiments and quantum information processing. Classical electromagnetic
theory however is completely linear—green light does not spontaneously split into two
different colors. Such a mixing process may only be achieved through light-ma er inter-
action, which is the purview of quantum electrodynamics (QED). The interaction provides
the nonlinearity necessary to generate three-wave mixing.

Generally, symmetry forbids third-order nonlinearity, and therefore three-wave mix-
ing. The strongest nonlinearity is often of the fourth order—the so-calledKerr nonlinearity—
that enables four-wave mixing, or interactions between four photons. In nonlinear optics,
such Kerr nonlinearity is intrinsic to χ(3) media [Boyd 2008]. In superconducting circuits,
Josephson junctions provide the same, but in a purely dispersive and quantum coherent
manner [Vool and Devoret 2017]. While four-wave mixing itself is useful for engineer-
ing interactions, it imparts undesired frequency shifts in response to applied power, con-
siderably increasing the engineering complexity. Such frequency shifts become especially
problematic as the number of interacting electromagnetic modes, and therefore frequency
crowding, increases, pu ing even more stringent requirements on allowable cross-talk in
state-of-the-art quantum processors [Devoret and Schoelkopf 2013].

Three-wave mixing promises an avenue to alleviate these problems. The necessary
nonlinearity for mixing—the third order—is distinct from the one that often limits device
performance—the fourth and even higher orders. In nonlinear optics, the crystalline struc-
tures of χ(2) media have a broken spatial symmetry that allows for appreciable third-order
nonlinearity. In a standard microwave mixer, the rectifying property of diodes breaks the
similar symmetry, but at the consequence of added dissipation not suitable for devices op-
erating in a quantum coherent regime. In superconducting circuits based on Josephson
junctions, how do we break the same symmetry to endow our devices with third-order
nonlinearity? How do we optimize these devices for quantum-coherent three-wave mix-
ing applications? The many orders of magnitude over which circuit nonlinearities may
be designed allows a rich space of different behaviors. In the context of circuit quantum
electrodynamics (cQED) [Blais et al. 2004; Wallraff et al. 2004; Blais et al. 2021], we focus
on three-wave mixing for single-mode squeezing in two distinct contexts: quantum-noise-
limited parametric amplification, and protection of quantum information in a Schrödinger
cat qubit.

1
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Figure 1.1 | Effective circuit elements made with Josephson junctions (crossed box cir-
cuit elements) that add third-order nonlinearity and thereby three-wave-mixing capabil-
ities to superconducting devices. All require a DC external flux bias Φ to induce a DC
circulating loop current that breaks the symmetry and enables odd orders of nonlinearity.
(a) Two Josephson dipole elements: the RF-SQUID (superconducting quantum interference
device) and the SNAIL (superconducting nonlinear asymmetric inductive element). (b)
Two Josephson quadrupole elements: the JRM (Josephson ring modulator) and the AC flux-
pumped DC-SQUID.

1.1 Three-wave mixing in superconducting circuits

The simplest way to achieve third order nonlinearity in superconducting circuits is to DC-
current bias a Josephson junction, where the direction of the current flow breaks the sym-
metry. To limit the susceptibility to low-frequency electrical noise, such a DC-current bias
may be incorporated via a DC-flux bias to a superconducting loop that contains Josephson
junctions. The DC-flux induces a persistent circulating current that biases the junctions.

Fig. 1.1 depicts a set of one-loop Josephson circuits with a DC-flux bias that provide
third order nonlinearity for three-wave mixing. We focus on two flavors: dipole elements
that impose a current-phase relation between two nodes of a circuit, and quadrupole ele-
ments that impose a current-phase relation between four nodes of a circuit. Historically,
the two depicted quadrupole elements, the Josephson Ring Modulator (JRM) [Bergeal et
al. 2010a; Bergeal et al. 2010b] and AC-flux pumped DC-SQUID (superconducting quan-
tum interference device) [Clarke and Braginski 2004; Yamamoto et al. 2008] are the most
commonly used for three-wave mixing applications. Owing to their quadrupole form, they
present sometimes unwieldy design constraints when combined in more complicated cir-
cuits. Moreover, they both also contain fourth-order nonlinearity and thus four-wave mix-
ing capabilities, which may be undesirable for a given application. As we will explore in
detail throughout this dissertation, the two dipoles, the RF-SQUID and the SNAIL (su-
perconducting nonlinear inductive element), offer the opportunity to circumvent both of
these properties [Zorin 2016; Fra ini et al. 2017]. Note, however, that a DC-flux-biased
DC-SQUID alone is equivalent to a single Josephson junction with a tunable inductance
and only even orders of nonlinearity [Vool and Devoret 2017]. Thus, our nonlinearity of
choice will be the SNAIL as a vehicle for engineering effective Hamiltonians for the de-
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sired applications of quantum-noise-limited amplification and the protection of quantum
information in a stabilized Schrödinger cat qubit.

1.2 Structure of this thesis

This thesis is arranged into three main sections: superconducting circuits with third-order
nonlinearity (Chapter 2), three-wavemixing for quantum-noise-limited amplification (Chap-
ter 3), and three-wave mixing for the manipulation and storage and a Schrödinger cat qubit
(Chapters 4–6).

In order to harness the power of three-wave mixing, we must design superconducting
circuits with third-order nonlinearity. Chapter 2 introduces the SNAIL—superconducting
nonlinear asymmetric inductive element—that the circuit designer may substitute for the
standard single Josephson junction to add third-order nonlinearity. We further derive the
Hamiltonian, and with it the strengths of the third- and fourth-order nonlinearities, of sim-
ple SNAIL-based devices, as well as extend the procedure to be compatible with finite-
element electromagnetic simulations. With the necessary nonlinearity in hand, we apply
microwave radiation to activate three-wave-mixing processes. Chapter 3 focuses on three-
wave mixing for the amplification of small—even single photon—microwave signals in the
SNAIL parametric amplifier (SPA). We experimentally verify our Hamiltonian model and
its dependence on physical device characteristics. We further optimize these characteris-
tics for robustness to large input signals in a way that maintains the added noise during
amplification at near the minimum required by quantum mechanics.

In the remainder of this thesis, we move to a regime where nonlinearity regulates the
added energy from the squeezing drive instead of the dissipation. This regime stabilizes
Schrödinger cat states, which are the basis of a quantum error correction code within a sin-
gle oscillator. Chapter 4 theoretically introduces this two-legged cat code and treats the
stabilization within a single oscillator via an interplay between a squeezing drive and Kerr
nonlinearity—the Kerr-cat qubit. In Chapter 5, we present experimental results on the im-
plementation of such a Kerr-cat qubit in a Kerr nonlinear resonator with three-wave-mixing
capabilities provided by a SNAIL. Crucially, this implementation not only successfully ex-
tends the memory lifetime of quantum information with minimal hardware complexity,
but is also accompanied by a fast complete set of single qubit gates as well as a quantum
nondemolition (QND) measurement of the encoded information. Finally, Chapter 6 ex-
plores further improvements to the Kerr-cat qubit with an eye toward future applications
as a fault-tolerant measurement apparatus or as a component in a future quantum com-
puting architecture.



2
3-wave mixing with SNAILs
In this Chapter, we discuss how to pragmatically and systematically design superconduct-
ing circuits with three-wave mixing capabilities. What is the simplest way to add three-
wave mixing capabilities? We propose the Superconducting Nonlinear Asymmetric In-
ductive eLement (SNAIL): an effective dipole for 3-wave mixing made from Josephson
junctions [Fra ini et al. 2017].

This chapter is entirely theoretical. We begin by introducing the SNAIL as an effective
three-wave mixing dipole element in Sec. 2.1. In Sec. 2.2, we then incorporate an array
of M SNAILs into a circuit with a single electromagnetic degree of freedom and derive its
Hamiltonian—both linear and third- and fourth-order nonlinear terms. Sec. 2.3 focuses
on the scaling of the nonlinearities with an eye toward the mixing applications in the re-
maining chapters. In Sec. 2.4, we explore the renormalization of Kerr nonlinearity due
to the presence of high frequency degrees of freedom that experimentally we would oth-
erwise like to ignore. We find a procedure to reliably implement a high frequency cutoff
to recover the originally derived Hamiltonian of Sec. 2.2. Finally, we extend apply these
principles to arbitrary SNAIL-based circuits and extend the procedure for implementing a
high frequency cutoff to finite element simulations via black-box quantization [Nigg et al.
2012].

2.1 Meet the SNAIL

In quantum devices based on superconductors, Josephson junctions provide a nonlinear in-
teraction between electromagnetic modes that is purely dispersive. Specifically, the Joseph-
son potential reads

UJJ(φ) = −EJ cos(φ) (2.1)

where φ is the superconducting phase difference across the junction, and EJ is the Joseph-
son tunnelling energy. However, because this potential is an even function of the super-
conducting phase difference φ, this potential’s nonlinearity is, to lowest order, of the form
φ4. This sources the so-called Kerr nonlinearity that is useful for engineering interactions
between modes. It also imparts undesired frequency shifts, which become problematic as
the number of interacting modes, and thus frequency crowding, increases. An alternative
strategy is to use a minimal φ3 nonlinearity for engineering the same useful interactions
via 3-wave mixing, while suppressing the unwanted Kerr-induced frequency shifts.

A form of φ3 nonlinearity has been realized with a ring of four Josephson junctions
threaded by a DC magnetic flux called the Josephson ring modulator (JRM) [Bergeal et
al. 2010a; Bergeal et al. 2010b]. However, the JRM is a quadrupole element—it imposes a
current and phase relation between four nodes of a circuit. Would it be possible to engineer

4
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a third-order φ3 nonlinearity in a dipole device similar to a Josephson junction?
We answer affirmatively with the circuit in Fig. 2.1(a). Because this dispersive dipole el-

ement is asymmetric under the transformation ofφ → −φ, in contrast with the SQUID [Zim-
merman and Silver 1966; Clarke and Braginski 2004] and the SLUG [Clarke 1966; Hover
et al. 2012], we named it the Superconducting Nonlinear Asymmetric Inductive eLement
(SNAIL) [Fra ini et al. 2017; Zorin 2016].

The SNAIL consists of a superconducting loop of n large Josephson junctions and a
single smaller junction (tunneling energies EJ and αEJ respectively), which we thread
with a DC magnetic flux Φ. With a few caveats to be discussed shortly, it has the inductive
energy:

US(φs) = −αEJ cos (φs)− nEJ cos
(
φext − φs

n

)
(2.2)

where φs is the superconducting phase across the small junction, φext = 2πΦ/Φ0 is the
reduced applied magnetic flux, and Φ0 = h/2e is the magnetic flux quantum. The SNAIL
also has a current-phase relation

IS(φs) =
1

φ0

∂US

∂φs
(2.3)

=
EJ

φ0

[
α sin (φs) + sin

(
φs − φext

n

)]

where φ0 = Φ0/2π = h̄/2e is the reduced flux quantum.
With α ∼ 0.8 and Φ/Φ0 ∼ 0.5, this circuit is well known as the flux qubit [Mooij et al.

1999; Wal et al. 2000], which has a double-well potential. Here, we focus on a different
parameter regime to create a potential with a single minimum, similar to the capacitively
shunted flux qubit [You et al. 2007]. Moreover, we can adjust the potential to cancel the
forth-order term while keeping a substantial cubic term for a particular choice of α and Φ.
Such a parameter regime that achieves an asymmetric potential was previously proposed
[Zapata et al. 1996] and realized [Sterck, Kleiner, and Koelle 2005] in the resistively shunted
regime under the name “SQUID ratchet” intended for voltage rectification.

Returning to the validity of the potential, under what conditions does the arrange-
ment of Josephson junctions in Fig. 2.1a act as an effective inductive element described
by Eq. 2.2? First, we require the phase slip rate in the array to be sufficiently slower than
the inverse of the timescales of any experiment so that phase slip dynamics can be ignored.
Since the phase slip rate is proportional to exp(−

√
EJ/ECJ

) where ECJ
= e2/2CJ is the

Coulomb charging energy with the junction capacitance CJ [Matveev, Larkin, and Glaz-
man 2002], we fabricate junctions with EJ ≫ ECJ

. Additionally, note that Eq. 2.2 is only
a function of a single degree of freedom φ despite being an n+1 junction circuit with only
1 loop constraint that includes an externally threaded flux Φ. This reduction is valid when
the dynamics in which we are interested occur at sufficiently lower frequencies than the
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Figure 2.1 | (a) Circuit for a Superconducting Nonlinear Asymmetric Inductive eLement
(SNAIL) reduced to one degree of freedom φs. The loop of n = 3 large junctions and one
smaller junction (tunneling energies EJ and αEJ respectively) is threaded with an external
DC magnetic flux Φ. (b) An example SNAIL potential (green) for α = 0.10 and Φ/Φ0 =
0.34 showcases an asymmetry about the minimum when compared to a scaled and shifted
cosine (black). (c) Colormaps of the (α,Φ) parameter space for the third-order c3 (top) and
fourth-order c4 (bo om) nonlinear potential terms. The black-hatched regions correspond
to double-well potentials similar to the flux qubit that should be avoided when optimizing
for a 3-wave mixing inductive dipole element. The crosses mark the set of parameters
chosen for (b).
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junction plasma frequency ΩJ =
√
8EJECJ

/h̄ such that these fast degrees of freedom can
be integrated out. The simplest form of integration, replacing the canonical phase with its
mean value as used to generate Eq. 2.2, is also only valid in the EJ ≫ ECJ

limit where
phase fluctuations are small. We will examine this mode elimination procedure in more
detail later in Section 2.4 in the context of predicting Kerr nonlinearity. Finally, any phys-
ical implementation of a SNAIL will have disorder in the large array junctions, parasitic
inductance in the leads connecting the junctions, and parasitic capacitance to ground for
each island (none drawn in Fig. 2.1a). Disorder of array junction inductance and lead in-
ductance both induce perturbative corrections to Eq.2.2 insofar as they are small compared
to LJ . As for parasitic capacitance C0 to ground of each island between junctions, as long
as C0 ≪ CJ/n

2, the array of junctions will act as an effective inductive element passing a
common RF current through each junction [Manucharyan 2012]. This current conservation
justifies the (φext −φs)/n argument to each cosine for an array junction. For the remainder
of this thesis, we will assume that all of the preceding conditions are realized by fabricat-
ing SNAILs in a process with ΩJ/2π ∈ [20, 45] GHz and sufficiently large junctions with
EJ ≫ EC and minimal parasitic inductance and capacitance.

With that admi edly extended list of conditions out of the way, we analyze the SNAIL’s
mixing capabilities by Taylor expanding about one of its equivalent minima φmin. We de-
note the expansion coefficients ck = (1/EJ)(d

kUS/dφ
k
s)|φs=φs,min where φs,min is numeri-

cally determined from the condition

c1 = α sin(φs,min) + sin
(
φs,min − φext

n

)
= 0. (2.4)

This condition is equivalent to insisting that IS(φs,min) = 0; there is no DC current flowing
across the entire dipole, only circulating current within it in response to the applied flux
(i.e. sin(φs,min) ̸= 0 for all Φ). The result is an effective potential for φ̃s = φs − φs,min:

US,eff(φ̃s)/EJ =
c2
2!
φ̃2
s +

c3
3!
φ̃3
s +

c4
4!
φ̃4
s + · · · (2.5)

that ceases to be 2πn-periodic for any finite truncation of the series. The coefficients ck,
whose specific values depend n, α, and Φ, maintain the periodicity in external flux ck(Φ) =

ck(Φ + Φ0) as well as the symmetry ck(Φ) = (−1)kck(−Φ).
The desire for a 3-wave mixing dipole element now translates to the requirement of

nonzero c3. Note that the case of n = 1, corresponding to an asymmetric DC-SQUID,
always gives c3 = 0 (in fact ck = 0 for all odd k > 2) since the potential about φmin is
always a pure cosine (∝ cos(φ̃)) irrespective of the values of α and Φ [Vool and Devoret
2017]. Interestingly, α and Φ are not enough to break the φ̃s → −φ̃s symmetry in this case.
Additionally, in the limit n ≫ 1, the array behaves as a linear inductance and the poten-
tial approaches that of the fluxonium qubit/RF-SQUID [Manucharyan et al. 2009; Masluk
2012]. Replacing the array with a geometric inductance in an RF-SQUID configuration also
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achieves the desired nonlinearity [Zorin 2016]. Experimentally, we choose the smallest
n ≥ 2 that is easy to fabricate, which is n = 3 for our fabrication processes. We specialize
all further analysis in this thesis to the case n = 3 as depicted in Fig. 2.1a, but the results
are easily extendable to different values of n.

Given n = 3, we are free to optimize the parameter space of (α, Φ). The top and bo om
panels of Fig. 2.1c show c3 and c4 respectively as a function of the (α, Φ) parameter space.
Focusing on the top, we want to maximize c3 while avoiding any parameter space where
the potential has multiple minima, marked by the black-hatched region, as this could cause
hysteresis when sweeping Φ. This is achieved by restricting ourselves to α ≤ 1/n. When
phrased in terms of inductances, this condition is identical to the standard condition to
avoid hysteresis in RF-SQUIDs: the small junction inductance LJ/α must be larger than
the rest of the total loop inductance, here nLJ from the array [Clarke and Braginski 2004].

In the bo om panel, we see that c4 changes sign as a function of Φ from c4(Φ = 0) < 0

to c4(Φ/Φ0 = 0.5) > 0. This c4 sign change enables the cancellation of Kerr nonlinearity
in devices that contain SNAILs, as we shall examine in detail for self-Kerr nonlinearity in
Section 2.2. To have robust experimental access to such Kerr-free bias points, it is conve-
nient to choose α = 1/n2 so that the Φ at which c4 = 0 is furtherest from Φ/Φ0 = 0.5. As
an example US(φS) in this parameter regime, Fig. 2.1b depicts one period of the potential
where the asymmetry about φs,min is clearly visible when compared to a shifted cosine.

In these parameter regimes, SNAILs may be added to superconducting circuits wher-
ever the circuit designer desires φ̃3

s and/or φ̃4
s nonlinearity. So long as there is no DC

current bias across the SNAIL (including via another flux-biased DC-connected supercon-
ducting loop) in which case φs,min would need to be recalculated, the internal dynamics
of the SNAIL may be abstracted away leaving an effective dipole element. This continues
the longstanding trend in superconducting circuits of distilling complex microscopic phe-
nomena down to their electromagnetic responses. The microscopic dynamics of Andreev
reflection can often be summarized by the Josephson relations for standard Josephson tun-
nel junctions; the SNAIL (like the SQUID before it) takes this abstraction one step further
for a combination of junctions. The primary result is one of ease and intuition in designing
more complex circuits for different applications: breaking selection rules in artificial atoms
[Vool et al. 2018], engineering clean mixing processes for parametric amplification [Fra ini
et al. 2017; Fra ini et al. 2018; Sivak et al. 2019; Sivak et al. 2020], or protecting quantum
information from common sources of decoherence [Grimm et al. 2020].

2.2 The simplest case: 1 nonlinear mode

Given that the SNAIL can be treated as an effective inductive dipole element, we may ask
how the electromagnetic environment in which SNAILs are embedded results in electro-
magnetic degrees of freedom with nonlinearity. In this section, we take a richly parameter-
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ized circuit model with a single degree of freedom involving several SNAILs and derive its
Hamiltonian in the absence of dissipation and incident microwave radiation. This circuit
models well the lowest frequency degree of freedom in both the amplifier [Fra ini et al.
2018; Sivak et al. 2019] and qubit [Grimm et al. 2020] experiments discussed in this the-
sis. The explicit analytic dependence of the Hamiltonian on circuit parameters will inform
design decisions. Moreover, we shall see in Section 2.4 how higher frequency degrees of
freedom can be eliminated in more complicated circuits to reveal a single low-frequency
degree of freedom well-modelled by this same circuit.

2.2.1 Reducing the Lagrangian to one coordinate

Depicted in Fig. 2.2a, the circuit consists of a series array of M SNAILs in series with an
ideal inductor with inductance L, and an ideal capacitor with capacitance C. The goal of
this section is to derive the Lagrangian for this single degree of freedom circuit. We assume
identical SNAILs each with n = 3 large junctions (each of inductance LJ ), a single small
junction (inductance LJ/α), and a DC flux bias Φ. As we saw, the set of flux-dependent
coefficients ck = ck(Φ) along with LJ completely characterize each SNAIL. For instance,
linear inductance of each SNAIL is Ls(Φ) = LJ/c2(Φ).

Following standard definitions and procedures [Vool and Devoret 2017], we begin by
defining the generalized branch phase¹ across each element: φC for the capacitor, φL for
the inductor, and φs,m for the small junction of SNAIL m (where m ranges from 1 to M ).
With foresight, we define another phase

φ = φL +
M∑

m=1

φs,m (2.6)

that represents the total phase across the inductive portion of the circuit defined through
the small junction of each SNAIL. We emphasize that this choice is one of convenience for
the form of future equations, but it has the eventual virtue of leaving the kinetic energy
quadratic and relegating all nonlinearity to the potential energy.

Furthermore, we invoke Kirchhoff’s voltage law around the loop, which constrains

φ̇C = φ̇L +

M∑
m=1

φ̇s,m

= φ̇ (2.7)

with the overdot denoting total time derivative. Note that the integral of this constraint still
has the freedom of an offset constant that we will use to insist that there is no DC current
flowing through the capacitor.

¹Recall the branch phase is the branch flux rescaled by φ0 = h̄/2e, which itself is the time integral of the
voltage across a branch.
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With these definitions, we write the Lagrangian of this system with M + 1 generalized
coordinates

LM+1 =
Cφ2

0

2
φ̇2 − UM+1(φ,φs,1, · · · , φs,M ) (2.8)

UM+1(φ,φs,1, · · · , φs,M ) =
1

2
EL

φ−
M∑

m=1

φs,m

2

+

M∑
m=1

US(φs,m) (2.9)

where EL = φ2
0/L, and φs,m and φ are now generalized coordinates as defined above.

The kinetic energy ofLM+1 only depends on a single generalized coordinate through φ̇.
Note, this is simply a fact in this lumped-element model; we choose not to draw capacitors
across each SNAIL and promise only to consider dynamics at frequencies low enough for
this lumped-element approximation to hold (see Section 2.4 for more detail on the validity
of excluding these capacitors). We clearly have more generalized coordinates than the one
φ that we need and we must choose constraints to eliminate the other M . Luckily, there
are M Euler-Lagrange equations of motion that do not depend on φ̇, specifically

0 = −∂LM+1

∂φs,m
(2.10)

=
∂UM+1

∂φs,m

= −EL

φ−
M∑

m=1

φs,m

+
dUS

dφs,m

and may therefore easily enforce those constraints. A particularly convenient way to pro-
ceed is the difference between equation m and m+ 1 to recover

dUS

dφs,m
=

dUS

dφs,m+1
, (2.11)

which is precisely current conservation

IS(φs,m) = IS(φs,m+1) (2.12)

at each node in between SNAILs. We have in essence derived Kirchhoff’s current law from
the Euler-Lagrange equations, ensuring there are no corrections due the presence of non-
linearity.

Solving Eq. 2.12 enforces φs,m = φs,m+1 since we assumed identical SNAILs with iden-
tical current-phase relations. Note perturbative disorder in SNAIL parameters would per-
turbatively change this statement. With this reduction, we are left with the reduced La-



2.2 | The simplest case: 1 nonlinear mode 11

a

b

Φ/Φ0

|2
K

|/
2π

(M
H

z)

Figure 2.2 | (a) A single degree of freedom, lumped element circuit model for a series array
of M identical SNAILs–each with a phase drop φs across its small junction, a DC-flux bias
Φ, and an effective inductance at this flux bias Ls–in series with an ideal inductor (induc-
tance L, phase drop φL) and a capacitor (capacitance C, phase drop φC). (b) Magnitude
of self-Kerr or anharmonicity 2K measured via Stark shift on a low participation ratio p
device with M = 1 SNAIL (device A from Table 3.1), together with theoretical predictions:
green includes current conservation Eq. 2.16 to renormalize the potential, red is the purely
participation ratio-based approach in which K ∝ c4.

grangian

L2 =
Cφ2

0

2
φ̇2 − U2(φ,φs) (2.13)

U2(φ,φs) =
1

2
EL (φ−Mφs)

2 +MUS(φs) (2.14)

where φs = φs,m to drop the subscript since all m are equivalent. At this point, the entire
array of SNAILs is treated as an effective dipole element in its own right with total potential
energy MUS(φs) and total phase drop across it² of Mφs.

We still however have not finished; φs is not an independent variable, as it does not have
its own kinetic energy. Therefore, prior to quantization, we follow the same procedure to
enforce the current conservation between the SNAIL array and the inductor: minimize the

²The path for this total phase drop of Mφs is defined through each of the small junctions.
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potential U2(φ,φs) as a function of φs. The resulting equation

0 =
∂U2

∂φs

= MEL(Mφs − φ) +M
dUS

dφs
(2.15)

0 = xJ(Mφs − φ) + α sin(φs) + sin
(
φs − φext

n

)
(2.16)

implicitly determines the SNAIL phase φs[φ] as a function of the mode generalized coor-
dinate φ, where in the last line we have rescaled introducing junction-to-linear inductance
ratio xJ = LJ/L = EL/EJ and used Eq. 2.2.

The Lagrangian can now be wri en in terms of a single degree of freedom φ

L1 =
Cφ2

0

2
φ̇2 − U1(φ) (2.17)

U1(φ) =
1

2
EL

(
φ−Mφs[φ]

)2
+MUS(φs[φ]) (2.18)

where again the function φs[φ] is determined from Eq. 2.16. Note that this potential now
treats the entire SNAIL array and the linear inductor together as a single effective dipole
element. Although Eq. 2.16 originates from the linear current conservation of Kirchhoff’s
current law, it results in a manifestly nonlinear constraint equation in terms of phases; φs[φ]

is clearly nonlinear. Thus, the potential energy of the nominally linear inductor will actu-
ally contribute to the nonlinearity of U1(φ) as we shall now explore in detail.

2.2.2 Taylor expanding the potential

To elucidate our new effective dipole element’s mixing capabilities, in the regime of small
phase fluctuations we can again Taylor expand the renormalized potential U1(φ) about its
minimum φ̄min, resulting in the coefficients c̃k = (1/EJ)(d

kU1/dφ
k)|φ=φ̄min , where φ̄min is

determined from the condition c̃1 = 0. Using current conservation Eq. 2.16 to simplify c̃1,



2.2 | The simplest case: 1 nonlinear mode 13

we can write the first six Taylor coefficients as

c̃1 = xJ
(
φ̄min −Mφs[φ̄min]

)
(2.19)

c̃2 = xJ

(
1−M

dφs

dφ
[φ̄min]

)
(2.20)

c̃3 = −MxJ
d2φs

dφ2
[φ̄min] (2.21)

c̃4 = −MxJ
d3φs

dφ3
[φ̄min] (2.22)

c̃5 = −MxJ
d4φs

dφ4
[φ̄min] (2.23)

c̃6 = −MxJ
d5φs

dφ5
[φ̄min] (2.24)

The derivatives of the implicit function φs[φ] can be found by differentiating Eq. 2.16 from
current conservation. For example,

dφs

dφ
=

(
M +

1

EL

d2US

dφ2
s

)−1

(2.25)

=
xJ

α cos (φs) + (1/n) cos [(φs − φext)/n] +MxJ

d2φs

dφ2
=

−1

EL

d3US

dφ3
s

(
dφs

dφ

)3

(2.26)

d3φs

dφ3
=

−1

EL

d4US

dφ4
s

(
dφs

dφ

)4

− 3

EL

(
d3US

dφ3
s

)2(
dφs

dφ

)5
 (2.27)

Additionally, we can show from the current conservation Eq. 2.16 that the presence of
the series linear inductor does not change the location of each SNAIL’s potential minimum.
Mathematically, this means φs[φ̄min] = φs,min (defined Eq. 2.4) and solving c̃1 = 0 we find
φ̄min = Mφs,min. Intuitively, the linear inductor is not a DC current source nor is it part
of a DC-connected superconducting loop, so the solution to zero the current through each
SNAIL IS(φs,min) = 0 is undisturbed by addition of the linear inductor in series. Therefore,
we can express the Taylor coefficients c̃k for the renormalized potential U1(φ) in terms of
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the bare ck introduced earlier a single SNAIL potential US(φs) (see Eqs. 2.2 and 2.5):

c̃2 =
p

M
c2 (2.28)

c̃3 =
p3

M2
c3 (2.29)

c̃4 =
p4

M3

[
c4 −

3c23
c2 +MxJ

]

=
p4

M3

[
c4 −

3c23
c2

(1− p)

]
(2.30)

c̃5 =
p5

M4

[
c5 −

10c4c3
c2

(1− p) +
15c33
c22

(1− p)2

]
(2.31)

c̃6 =
p6

M5

[
c6 −

10c24 + 15c5c3
c2

(1− p) +
105c4c

2
3

c22
(1− p)2 − 105c43

c32
(1− p)3

]
(2.32)

where we have defined the SNAIL array’s inductive participation ratio:

p =
MLs

L+MLs
=

MxJ
c2 +MxJ

(2.33)

which is inherently flux-dependent since c2 = c2(Φ) or equivalently Ls = Ls(Φ) = LJ/c2.
Note that 1 − p = L/(L + MLs) is the proportion of the total inductance that comes

from the linear inductor, and we have made no assumptions on its magnitude. Similarly,
all SNAIL coefficients |ck/c2| ∼ O(1) (except for interference effects at special values of
applied flux Φ). Thus, all terms in the above c̃k coefficients are equally important; none are
a priori small compared to others.

To insist on the importance of this, consider the case of a single Josephson junction
with a linear inductance in series. For our parameters, this implies se ing M = 1 and
(c2, c3, c4, c5, c6, · · · ) = (1, 0,−1, 0, 1, · · · ) in accordance with −EJ cos(φs) potential. The
renormalized coefficients for U1(φ) in this case would be

c̃2 = p (2.34)

c̃3 = 0

c̃4 = −p4

c̃5 = 0

c̃6 = p6
[
1− 10(1− p)

]

implying that if p < 0.9 then the sixth order term has the opposite sign from what is naïvely
expected from the cosine expansion. As such, when examining a device’s nonlinearity, it
is important to consider the renormalization of the potential due to the presence of a linear
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inductance in series with Josephson mixing elements.

2.2.3 Quantization

Now that we understand the structure of our potential and its nonlinearity, we perform a
Legendre transformation on L1 and canonically quantize to get the Hamiltonian

H1 = 4ECN
2 + U1(φ) (2.35)

U1(φ) =
1

2
EL

(
φ−Mφs[φ]

)2
+MUS(φs[φ]) (2.36)

where Eq. 2.16 defines φs[φ], EC = e2/2C is the charging energy, N is the conjugate
momentum of position-like variable φ and counts the charge (in units of Cooper pairs 2e)
across the capacitance³. The phaseφ and Cooper pair numberN are equivalently conjugate
in the quantum sense:

[φ,N ] = i. (2.37)

Note we have ignored and will continue to ignore the effects of offset charges through-
out this thesis, but some comments are warranted. The potential U1(φ) is not periodic so,
within the standpoint that the periodicity of the potential restricts the eigenspectrum of
φ and N [Devoret 2021], the eigenspectrum of N should be continuous. When L = 0 (a
short replaces the inductor), the potential acquires the symmetry U1(φ) = U1(φ + 2πnM)

and thus an associated offset charge⁴. As such, this case is quite amenable to numerical di-
agonalization in the charge basis. As in the transmon qubit, which corresponds to M = 1

and n = 1, the eigenspectrum will become exponentially insensitive to offset charge in the
EJ/EC → ∞ limit [Koch et al. 2007]. In the finite but vanishing limit of inductance L → 0,
although the potential is strictly not periodic, we expect the eigenspectrum and associated
matrix elements to mimic the physics of theL = 0 case; this is the dual of a similar result for
adding a large inductance L → ∞ in parallel with a transmon qubit [Koch et al. 2009]. Fi-
nally, we could also consider the effect of offset charges on every island between junctions
within each SNAIL and similarly on every island between SNAILs. Again, the effect of
these offset charges is suppressed in arrays of junctions under the same EJ ≫ ECJ

condi-
tion ensuring a small phase-slip rate [Matveev, Larkin, and Glazman 2002]. We henceforth
assume the above conditions are satisfied and ignore offset charges.

Expanding the above Hamiltonian Eq. 2.35 about φ̄min, we find

H1 = 4ECN
2 + EJ

(
c̃2
2!
φ̃2 +

c̃3
3!
φ̃3 +

c̃4
4!
φ̃4 + · · ·

)
(2.38)

where φ̃ = φ − φ̄min describes phase fluctuations about the potential minimum and still
satisfies [φ̃,N ] = i. For more convenience, we introduce the standard bosonic creation and

³Explicitly, N = (1/h̄)(∂L1/∂φ̇) = (h̄/8EC)φ̇
⁴Following from US(φs) = US(φS + 2πn) and that φs[φ] = φ/M when L = 0.
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annihilation operators a† and a with commutation relation
[
a,a†

]
= 1 that diagonalize

the quadratic part of the Hamiltonian in the excitation number basis. They relate to the
canonical phase via φ̃ = φzpf(a+ a†), where the zero-point fluctuations of the phase is

φzpf =

(
2EC

c̃2EJ

)1/4

(2.39)

=

(
1

8(h̄/4e2)2
L+MLs

C

)1/4

and c̃2 = pc2/M as in Eq. 2.28. The canonical momentumN = iNzpf(a
†−a) has zero-point

fluctuations Nzpf = 1/2φzpf.
With these definitions, the Hamiltonian after this second quantization can be wri en

H1/h̄ = ωaa
†a+ g3(a+ a†)3 + g4(a+ a†)4 + · · · (2.40)

where the oscillator’s frequency is

ωa =
1

h̄

√
8c̃2EJEC =

1√
C(L+MLs)

(2.41)

and the nonlinear parameters are

h̄gk =
c̃k
k!
EJ

(
φzpf

)k
(2.42)

that set the mixing capabilities of this degree of freedom. This Hamiltonian and the de-
pendence of its parameters on physical device characteristics are the central result of this
section. It distills the dynamics down to a few parameters and serves as the starting point
for the application of microwave radiation for three-wave mixing applications, specifically
for parametric amplification in Chapter 3 and the stabilization of quantum information in
Chapters 4–6.

Examining the nonlinearities more closely, since a device’s frequency ωa is often a con-
venient design parameter, we rewrite Eq. 2.39

φzpf =

√
4EC

h̄ωa
(2.43)

=

√
h̄ωa

2c̃2EJ

using Eq. 2.41 to eliminate the dependence on the inductive or capacitive energies respec-
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tively. Rewriting the nonlinearity in turn as

h̄gk =
1

k!

c̃k
c̃2

h̄ωa

2

(
φzpf

)k−2
(2.44)

=
1

k!

c̃k
c̃2

h̄ωa

2

(
4EC

h̄ωa

)k/2−1

we have an intuitive expression with which to work for the purpose of designing nonlin-
earity. For a given mode frequency and designed capacitance, together implying a fixed
total inductanceMLs+L of our effective SNAILs-and-linear inductive mixing element, the
coefficients c̃k/c̃2 ∝ pk−1/Mk−2 scale the strength of all the nonlinearities gk. Specifically
for future comparison, we write the third-

h̄g3 =
1

6

p2

M

c3
c2

√
EC h̄ωa (2.45)

and fourth-order nonlinearities

h̄g4 =
1

12

p3

M2

[
c4 −

3c23
c2

(1− p)

]
1

c2
EC (2.46)

using Eqs. 2.29- 2.30 to write in terms of single-SNAIL coefficients c2, c3, and c4.
To explicitly reveal the perturbative structure, we pull out this p and M dependence of

c̃k to find

h̄gk =
p

k!

(
c̃k
c̃2

Mk−2

pk−1

)
h̄ωa

2

(
p

M
φzpf

)k−2

(2.47)

∝ p

k!

(
O(ck/c2)

) h̄ωa

2

(
p

M
φzpf

)k−2

where in the last line we use O(ck/c2) to indicate the O(1) combination of single-SNAIL
parameters cj≤k and powers of 1 − p as visible in the square brackets of Eqs. 2.28- 2.32.
This rewriting makes evident that, as long as pφzpf/M << 1, we can hope to truncate the
series expansion and still model the relevant dynamics.

Any truncation however will always break down at a critical number of photons ncrit

within the mode, which we crudely estimate by comparing successive terms from Eq. 2.40
while making the substitution a, a† → √

ncrit. Comparing the fourth and sixth order terms,
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we calculate

ncrit = 15

(
c̃4
c̃6

p2

M2

)
M2

p2
1

φ2
zpf

(2.48)

∝ 15
(
O(c4/c6)

)M2

p2
1

φ2
zpf

where we have again an O(1) prefactor. Similar results with larger prefactors are obtained
for comparing higher order terms; a π2 prefactor is obtained when asking how many pho-
tons puts π phase across a single SNAIL. Although crude, ncrit shows that the range of
validity of a truncated Hamiltonian Eq. 2.40 is inextricably linked to our small parameter
pφzpf/M .

Given the hierarchy of parameters gk ≪ ωa, we perform perturbation theory in the
small parameter pφzpf/M and organize the results for the eigenstates and eigenenergies as
an effective Hamiltonian

H1,eff/h̄ = (ωa +∆a)a
†a+Ka†2a2 +K ′a†3a3 + · · · (2.49)

with the first three parameters

∆a = 12g4 −
60g23
ωa

+

[
90g6 −

1100g3g5
ωa

− 288g24
ωa

+
6768g23g4

ω2
a

− 10320g43
ω3
a

]
(2.50)

K = 6g4 −
30g23
ωa

+

[
90g6 −

1260g3g5
ωa

− 306g24
ωa

+
8100g23g4

ω2
a

− 12690g43
ω3
a

]
(2.51)

K ′ = 20g6 −
280g3g5

ωa
− 68g24

ωa
+

1800g23g4
ω2
a

− 2820g43
ω3
a

(2.52)

solvedwith correctionsO(ωa(pφzpf/M)6), whose eigenstates are Fock states satisfyinga†a |n⟩ =
n |n⟩ just like a harmonic oscillator. Note the higher order corrections were programmati-
cally generated and may be carried out to arbitrary order—even in the presence of strong
microwave drives [Venkatraman et al. 2021]. The Lamb shift ∆a is fundamentally quan-
tum in nature, resulting from normal ordering higher order terms; classical perturbation
theory, or even a finite-element electromagnetic solver, would always result in ∆a = 0.

The Kerr nonlinearity, often wri en in terms of the anharmonicity = 2K of a weakly
anharmonic oscillator like a transmon (anharmonicity 2h̄K = −EC) [Koch et al. 2007], de-
serves special scrutiny. We first rewrite the leading order contribution

2h̄K =
p3

M2

[
c4 −

3c23
c2

(1− p)− 5

3

c23
c2
p

]
1

c2
EC +O(ωa(pφzpf/M)4) (2.53)

by substituting g3 and g4 with Eqs. 2.45–2.46. This represents the central result of this sec-
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tion, and we will systematically compare this predication to multiple devices in Chapter 3.
While the values themselves may be renormalized in the presence of strong microwave
drives [Sivak et al. 2019; Venkatraman et al. 2021], the undriven—or at least weakly driven
for measurement—values correspond well with the given expression.

We would like to stress that the calculation of the Kerr nonlinearity here differs signifi-
cantly from previous calculations in three-wave-mixing amplifiers, such as JPCs [Schackert
2013; Flurin 2015; Liu et al. 2017]. Previous calculations considered first the linearized cir-
cuit, in which the total phase drop φ splits between the nonlinear circuit elements and the
linear inductor in proportion to their respective participation ratios⁵ p and 1 − p. Then
they assumed that the nonlinearity is diluted by the corresponding power of the partic-
ipation ratio, in which case we would have gk ∝ pk−1ck. As we can see from Eqs. 2.45
and Eqs. 2.46 or even Eqs.2.29-2.32, this approach yields the correct values for the lowest
order of cubic nonlinearity, but fails to predict higher-order nonlinearities, such as g4 and
therefore the anharmonicity 2K correctly.

This discrepancy arises because the linear participation ratio-based approach does not
properly account for the linear current conservation, Eq. 2.16, between the SNAIL array
and the inductor to the necessary order in φ. This effect leads to a renormalization of g4
due to c3 evident in Eq. 2.46. One can see that in the limit of small participation ratio
p → 0 the additional contribution is equal to −3c23/c2, which does not contain any small
parameters relative to c4. This significantly shifts the Kerr-free point in flux and modifies
the whole Kerr nonlinearity profile. The comparison of data taken on a low-participation-
ratio device⁶ with predictions of both approaches is shown in Fig. 2.2b. At Φ/Φ0 = 0 and
Φ/Φ0 = 0.5 where symmetry forbids odd order nonlinearity, the predictions agree; yet, at
certain fluxes, the predictions different by several orders of magnitude.

Moreover, apart from this renormalization effect, there is a trivial second-order per-
turbation theory correction to energy levels due to the g3 term in the Hamiltonian, which
affects the anharmonicity 2K (see last term in Eq. 2.53). Note that both g4 and this correc-
tion scale identically with EC . This perturbative correction is insignificant in the limit of
small participation ratio. On the other hand, in the limit p → 1, the renormalization effect
due to the linear inductance becomes irrelevant and the perturbative contribution becomes
important instead.

In the case where symmetry forbids odd order terms, a similar story occurs; the leading
order g4 is correct, but the linear participation ratio method fails to predict the sixth order
nonlinearity g6 and therefore K ′ and corrections to K correctly. Specifically, consider a
single DC-SQUID circuit with some linear inductance in series. In this case, ck = 0 and

⁵Explicitly in our notation, the equivalent approximation would be assuming φs[φ] = pφ/M
⁶Specifically, device A from Table 3.1.
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thus gk = 0 for all odd k. The lowest even orders are:

h̄g4 =
1

12

p3

M2

c4
c2
EC (2.54)

h̄g6 =
1

30

p5

M4

[
c6 −

10c24
c2

(1− p)

]
1

c2

(
EC

h̄ωa

)2

(2.55)

leaving the leading contribution to the effective sixth order shift

h̄K ′ = 20
p5

M4

[
c6 −

10c24
c2

(1− p)− 17

8

c24
c2
p

]
1

c2

(
EC

h̄ωa

)2

(2.56)

= 20
p5

M4

[
1− 10(1− p)− 17

8
p

](
EC

h̄ωa

)2

(2.57)

where in the last line we used c4/c2 = −1 and c6/c2 = 1 for a DC-SQUID with purely
cosine potential. These expressions make clear that even in standard transmon circuits,
not only is careful consideration of series linear inductance important, but that cascaded
lower order processes (e. g. ∝ c24/c2) often dominate the higher order nonlinearity. It is
for this reason that controllable higher order processes in superconducting circuits have
thusfar been realized in a Raman-assisted manner [Mundhada et al. 2017; Mundhada et
al. 2019].

In summary of what we achieved this section, we derived the Hamiltonian Eq. 2.35
for a circuit containing an array of M SNAILs in series with an inductor and capacitor
(Fig. 2.2). We expanded this Hamiltonian in terms of the small parameter pφzpf/M to
find the Hamiltonian Eq. 2.40 of a weakly anharmonic oscillator with nonlinearities gk

(Eqs. 2.45- 2.46). These nonlinearities, as well as their effect on the oscillator’s eigenener-
gies (parameterized by ∆a, K, K ′), depend to leading order on the coefficients of a renor-
malized potential Eqs. 2.28–2.32. This renormalization effect results from linear current
conservation between the SNAIL array and the linear inductor Eq. 2.16 enforcing φs[φ] to
be a nonlinear function. Counterintuitively, the importance of this renormalization scales
with the proportion of linear inductance 1−p in the system rendering it important for many
superconducting devices, especially parametric amplifiers.

2.3 Arrays of SNAILs

Postponing further discussion of the renormalization of Kerr for Sec. 2.4, we first focus
on the dependence of the effective Kerr nonlinearity (Eq. 2.53) on the number of SNAILs
M arrayed in series. The inclusion of the number Josephson dipoles in series opens up
regimes of Kerr nonlinearity that are otherwise impossible to achieve simply by scaling the
critical current of a single junction. A primary example would be arrays of Josephson junc-
tions to implement a superinductance [Masluk et al. 2012; Manucharyan 2012]. Also, as we
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a

c

b

d

Figure 2.3 | Josephson junction circuits all with the the same operating frequency but
with different Kerr nonlinearities. (a) A single junction with inductance LJ shunted by a
capacitanceC. (b) ArrayingM junctions in series each with inductanceLJ/M . (c) Arraying
M junctions each with inductance LJ and shunting capacitance C/M adjusted to keep the
operating frequency constant. (d) Arraying M junctions each with inductance LJ in series
with geometric inductance L; shunting capacitance Cp/M where p = MLJ/(L+MLJ) is
the array’s inductive participation ratio.

shall discuss in detail in Chapter 3, the Kerr nonlinearity often determines a parametric am-
plifier’s power-handling performance. As such, arrays of Josephson junctions have been
used since the early days of amplifiers [Castellanos-Beltran et al. 2008], suggested for the
improvement of power handling [Eichler and Wallraff 2014], and then implemented for the
same [Eichler et al. 2014; Fra ini et al. 2018; Planat et al. 2019; Sivak et al. 2020]. Finally, the
model of an array of Josephson junctions captures well the linear and nonlinearity charac-
teristics of devices made from kinetic inductive materials like granular aluminum [Maleeva
et al. 2018] or even the investigation of phase slips in a superconducting devices [Matveev,
Larkin, and Glazman 2002; Pop et al. 2010].

To focus the discussion on a design perspective, consider the set of circuits in Fig. 2.3
corresponding to different design choices. The circuit parameters have been chosen to fix
the operating frequency at ωa = 1/

√
CLJ , and different design choices will result in dif-

ferent nonlinearities. The single-junction circuit Fig. 2.3a has anharmonicity 2h̄K = −EC ,
given by Eq. 2.53 with appropriate substitution of parameters⁷. The maximum number of
allowed photons ncrit ∝ 1/φ2

zpf = h̄ωa/EC = 2EJ/h̄ωa, as per Eq. 2.48 scales with the criti-
cal current. In fact, the linear inductance, Kerr nonlinearity, and maximum photon number
are all locked together in this circuit by the structure of the cosine potential; choosing the
frequency therefore leaves only one parameter, say the junction critical current, to set all of
the nonlinearity.

Introducing an array of Josephson junctions decouples the linear inductance from the
nonlinearity. For the most efficient dilution of the nonlinearity, consider circuit Fig. 2.3b

⁷Concretely, ck = 0 for odd k and ck = (−1)k/2+1 for even k; p = 1 and M = 1.
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where we replace the junction with M junctions each with M times larger critical current
(inductance LJ/M ) [Eichler and Wallraff 2014]. In this case, the canonical mode phase
splits equally among the junctions resulting, to leading order, in an anharmonicity

2h̄K = −12
MEJ

4!

M∑
m=1

(
φzpf

M

)4

= − 1

M2
EC . (2.58)

Importantly, in this approach to arraying, the resonant frequency and the impedance both
remain independent ofM . The critical photon number ncrit ∝ M2/φ2

zpf matches the scaling
of the M2 reduction in Kerr, indicating all orders of nonlinearity are still locked together.
While the dilution of nonlinearity in this case appears quite efficient ∝ 1/M2, in practice
this approach quickly runs into fabrication limitations. For example, in a fabrication pro-
cess with a fixed critical current density, reducing the junction inductance toLJ/M requires
an M times larger area junction. The finite size of the junctions and the leads connecting
them will contribute linear inductance appreciable compared to LJ/M that can no longer
be ignored.

A more realistic practical approach is to array fixed-EJ junctions (inductance LJ as-
sumed larger than any parasitic geometric inductance) as depicted in Fig. 2.3c. In this case
the total mode inductance grows ∝ M , and therefore the capacitance must be adjusted
∝ 1/M to keep the frequency constant. This leads to ∝ M increase in the mode impedance
and a corresponding ∝

√
M increase in φzpf. This significantly alters the array’s ability to

dilute the Kerr nonlinearity:

2h̄K = −12
EJ

4!

M∑
m=1

(
φzpf

M

)4

= − 1

M
EC (2.59)

with the critical photon number ncrit ∝ M2/φ2
zpf = 2MEJ/h̄ωa again mirroring the Kerr

nonlinearity. Interestingly, the nonlinearity all scales with MEJ , exactly as it would in
the single junction circuit Fig. 2.3a with an M times larger junction and compensating ca-
pacitance (LJ → LJ/M and C → MC). For a given mode frequency, the nonlinearity is
completely agnostic to whether the inductance comes in the series form of an array, or the
parallel form via more parallel conduction channels within a single junction⁸. The only dif-
ference between these two cases is the mode’s impedance. This impacts the ease with which
the desired capacitance can be realized while adding minimal linear inductance, as well as
the engineering of couplings to other circuits. This equivalence explains the apparent con-
fusion that state-of-the-art amplifiers based on single (or two) junction circuits [Mutus et

⁸Recall that the Ambegaokar-Baratoff relation for EJ sums over many parallel conduction channels.
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al. 2014; Roy et al. 2015] often have similar power-handling capabilities to those based on
arrays [Eichler et al. 2014; Fra ini et al. 2018; Planat et al. 2019; Sivak et al. 2019; Sivak et al.
2020]. The only difference is in the fabrication constraints: arrays relax the constraint for
large capacitors in single-junction circuits while requiring a stable fabrication process for
M junctions at a time.

Finally, in Fig. 2.3d, we include the linear inductance L in series with the array. The
anharmonicity

2h̄K = −12
EJ

4!

M∑
m=1

(
p
φzpf

M

)4

= − p2

M
EC (2.60)

in this case resembles the previous case with an additional p2 factor. The critical photon
number ncrit ∝ M2/p2φ2

zpf = 2MEJ/ph̄ωa however now has a lightly different scaling
∝ M/p. When p ≪ 1 implying linear inductance is appreciable, which is common in am-
plifiers like the JPC [Bergeal et al. 2010a; Bergeal et al. 2010b; Schackert 2013; Flurin 2015],
p ≈ MLJ/L drastically changing the apparent scaling of Kerr to 2h̄K ≈ −MEC(LJ/L)

2 ∝
M and ncrit ∝ 2EJ/h̄ωa ×L/LJ . The Kerr nonlinearity increases with M because there is M
times more of the perturbative amount of nonlinearity, but the critical photon number is
completely independent of M . These considerations lead us to choose designs with p → 1

to have the ability to put the largest possible number of photons for a given amount of
nonlinearity.

Overall, these simple scaling arguments demonstrate that larger array size M is not
strictly equivalent to smaller Kerr nonlinearity. Rather, arraying is another design tool for
weakly anharmonic circuits that enables access to regimes of Kerr nonlinearity that are oth-
erwise inaccessible due to other fabrication or design constraints. Moreover, in the large
M limit, the lumped element approximation surely breaks down and we should consider a
transmission line model. The scaling of Kerr nonlinearity with number of junctions still re-
mains weak∝ 1/M in this regime for the mode at the desired operating frequency [Sivak et
al. 2020]. As such, fabrication constraints will lower bound the Kerr nonlinearities achiev-
able in high participation ratio p → 1 devices made of Al-AlOx-Al. Lower nonlinearities
may be designed with kinetic inductive materials, such as granular aluminum [Maleeva
et al. 2018] or NbTiN [Vissers et al. 2016; Parker et al. 2021].

2.4 Renormalization of Kerr

In the single degree of freedom model of Sec. 2.2, we saw how the renormalization of the
SNAIL potential due to current conservation with the linear inductor in series was crucial to
the prediction of g4 and thus effective Kerr nonlinearity K. We can also explain the physics
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of this nontrivial contribution to g4 in Eq. 2.46 from a different perspective. This correction
is nothing but a renormalization of the potential due to high-frequency degrees of freedom
that are inevitably present in the system (for example, the plasma mode associated with
each junction). Such modes cannot be directly probed by low-energy experiments, but
their effect is evident in measurable quantities such as the anharmonicity 2K.

To demonstrate this point, consider the circuit in Fig. 2.4a that includes a capacitance
Cs shunting the SNAIL (we set M = 1 for simplicity). This is the simplest addition of
a high-frequency mode: the SNAIL plasma mode with frequency Ωs = 1/

√
LsCs much

larger than our desired operating frequency ωa = 1/
√
C(L+ Ls) (Eq. 2.41).

In this system, in contrast with the Lagrangian Eq. 2.13 in Sec. 2.2, the variable φs be-
comes a real quantum-mechanical coordinate with its own conjugate momentum. There-
fore, it should be quantized on equal footing with φ.⁹ However, since Ωs ≫ ωa, this fast
degree of freedom can be integrated out using the Born-Oppenheimer method or more
sophisticated quantum field theory techniques [Altland and Simons 2010]. After such an
integration, we will show that the effective Kerr nonlinearity K of the low-frequency mode
coincides with Eq. 2.53 and does not depend on the precise value ofΩs in the limitΩs ≫ ωa

and φzpf ≪ 1; thus, validating the relevance of the single mode circuit.
To this end, we first derive the Hamiltonian of the two-mode circuit Fig. 2.4a. While

we could start from the Lagrangian Eq. 2.13 with additional term Csφ
2
0φ̇s/2, perform the

Legendre transformation and then diagonalize the quadratic part, we will take a different
approach sometimes referred to as black-box qauntization (BBQ) [Nigg et al. 2012]. This ap-
proach adds important intuition about considering dipole mixing elements as nonlinear
sca erers in an otherwise linear electromagnetic environment, and generalizes nicely to
finite element simulations as we will discuss in more detail in Sec. 2.5.

Following the BBQ approach, as shown in Fig. 2.4b we separate out the linear induc-
tance Ls from the nonlinear part, effectively partitioning the SNAIL into two elements in
parallel: one linear with potential energy c2EJ φ̃

2
s/2, and the other nonlinear with potential

energy
UNL(φ̃s) = US(φ̃s + φs,min)−

c2
2
EJ φ̃

2
s (2.61)

with an added constraint of zero applied flux in the newly formed loop enforcing the same
phase drop φ̃s across both elements¹⁰. We then compute the impedance ZNL[s] that the
nonlinearity sees¹¹ and express the result with a partial fraction decomposition:

ZNL[s] = sLs
ω2
+ω

2
−

ω2
+ − ω2

−

[
1− ω2

−LC

s2 + ω2
−

−
1− ω2

+LC

s2 + ω2
+

]
(2.62)

⁹Defined φ = φL + φs consistently with Sec. 2.2.
¹⁰We could alternatively use φs, later minimize the potential and shift all coordinates accordingly.
¹¹s is the standard Laplace transform variable where the substitution s = jω recovers the Fourier transform.
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NL
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f

· · ·

Figure 2.4 | (a) Two degree of freedom circuit with a SNAIL-mode gauge-coupled to a lin-
ear LC oscillator. The SNAIL-mode has a capacitance Cs across a SNAIL with phase drop
φs across its small junction and an effective inductance Ls. (b) Decomposition of (a) into an
impedance ZNL[s] seen by the nonlinearity (NL) of the effective dipole element with phase
drop φ̃s = φs − φs,min. (c) Rewriting circuit (b) using a Foster decomposition of ZNL[s] in
terms of canonical branch phases φ± across inductors L± and associated capacitorsC±. (d)
Definitions for elements of Feynman diagrams used to eliminate the high-frequency SNAIL
mode. Red (black) represent propagator for low- (high-) frequency modes with canonical
coordinate φ− (φ+). (e) Diagrammatic series to calculate effective self-Kerr nonlinearity K
low-frequency (red) mode. Each diagram corresponds to a term in Eq. 2.53 where third-
(fourth-) order interaction vertices are weighted by c3 (c4) from the SNAIL potential. (f)
Example higher-order one loop diagrams each suppressed by φ2

zpf.
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where we identify two pairs of poles jω± and −jω± at frequencies

ω2
± =

L+ Ls

2LLsCs
+

1

2LC
±

√(
L+ Ls

2LLsCs
+

1

2LC

)2

− 1

LLsCCs

=
Ω2
s

2(1− p)

(
1 +

ω2
a

Ω2
s

)1±√1− 4(1− p)
ω2
a/Ω

2
s

(1 + ω2
a/Ω

2
s)

2

 (2.63)

with p = Ls/(L + Ls) and simplifying with the convenient relationship 1 − p = LCω2
a.

When Ωs ≫ ωa, both reduce to

ω− ≈ ωa = 1/
√

C(L+ Ls) (2.64)

ω+ ≈ Ωs√
1− p

=

(
Cs

LsL

L+ Ls

)−1/2

(2.65)

up to corrections O(ωa/Ωs).
The form of Eq. 2.62 corresponds to the Foster decomposition of the impedance as de-

picted in Fig.2.4c, which contains two degrees of freedom with frequenciesω± = 1/
√
L±C±.

Note that the low-frequency pole at ω− corresponds precisely to the single mode in the
previous calculation of Sec. 2.2. By inspection of Eq. 2.62 or equivalently calculating the
residue for each pole, the respective characteristic impedances as seen by the nonlinearity
are

Z− = Lsω−

[
1− (ω−/ωa)

2(1− p)

1− (ω−/ω+)2

]

≈ pLsω− = p2
√

L+ Ls

C
(2.66)

Z+ = Lsω+

(
ω−
ωa

)2
[
1− p− (ωa/ω+)

2

1− (ω−/ω+)2

]

≈ (1− p)Lsω+ = p(1− p)
ω+

ωa

√
L+ Ls

C
(2.67)

with Z± =
√

L±/C±. The impedances and frequencies can be equivalently be rewri en as
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effective inductances (via Z± = L±ω±)

L− = Ls

[
1− (ω−/ωa)

2(1− p)

1− (ω−/ω+)2

]
≈ pLs = p2(L+ Ls) (2.68)

L+ = Ls

(
ω−
ωa

)2
[
1− p− (ωa/ω+)

2

1− (ω−/ω+)2

]

≈ (1− p)Ls =
LLs

L+ Ls
= p(1− p)(L+ Ls) (2.69)

and capacitances

C− = C

(
ωa

ω−

)2 1

p

[
1− (ω−/ω+)

2

1− (ω−/ωa)2(1− p)

]
≈ 1

p2
C (2.70)

C+ = Cs

(
Ωs

ω+

)2( ωa

ω−

)2
[

1− (ω−/ω+)
2

1− p− (ωa/ω+)2

]
≈ Cs (2.71)

via Z± = 1/C±ω±, where throughout the approximations assume Ωs ≫ ωa.
We define the new canonical coordinates for each degree of freedom to the branch phase

across each inductor φ±. In these coordinates the Hamiltonian of the circuit Fig. 2.4 is

H2 =
∑
σ=±

4ECσN
2
σ +

1

2
ELσφ

2
σ + UNL(φ+ +φ−) (2.72)

where we have used the loop containing the nonlinearity and the two linear inductors to
enforce φ̃s = φ+ + φ−. These canonical phases have respective fluctuations as seen by the
nonlinearity

φ−,zpf =
√
p

√
1− (ω−/ωa)2(1− p)

1− (ω−/ω+)2
φzpf

≈ pφzpf (2.73)

φ+,zpf =

√
p
ω+

ωa

(
ω−
ωa

)√
1− p− (ωa/ω+)2

1− (ω−/ω+)2
φzpf

≈
√

p(1− p)
ω+

ωa
φzpf (2.74)

where we have used Eq. 2.39 to write in terms of φzpf from the 1-mode problem of Sec. 2.2.
We emphasize that as of yet no assumptions have been made aboutφzpf; we have merely
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made a linear canonical transformation from φ and φs to φ±. This new basis, which diag-
onalizes the quadratic part of the Hamiltonian, is often preferable for numerical diagonal-
ization, especially in inductively shunted circuits [Smith et al. 2016].

As before, we introduce standard bosonic creation and annihilation operators but now
for two modes defined φ− = φ−,zpf(a + a†) and φ+ = φ+,zpf(s + s†) with commutators[
a,a†

]
= 1 and

[
s, s†

]
= 1. Substituting into Eq. 2.72, we find

H2 = h̄ω−a
†a+h̄ω+s

†s+HNL (2.75)

HNL =
c3
3!
EJ(φ−,zpf(a+ a†) + φ+,zpf(s+ s†))3

+
c4
4!
EJ(φ−,zpf(a+ a†) + φ+,zpf(s+ s†))4 + · · · (2.76)

where truncation of the series requires φ−,zpf ≪ 1 and φ+,zpf ≪ 1.
Under this condition, we can again perform perturbation theory and write the leading

Kerr corrections to the eigenenergies with the effective Hamiltonian

HNL,eff = Kaaa
†2a2 +Kasa

†as†s+Ksss
†2s2 + · · · (2.77)

where Kaa, Kas and Kss are the effective self- and cross-Kerr. Under the further assump-
tion that

〈
s†s
〉

= 0 in our experiments, which is valid if Ωs is sufficiently large and the
environment sufficiently cold, the only relevant nonlinearity is the self-Kerr Kaa. Remark-
ably, Kaa = K from Eq. 2.53 of the single mode circuit in Sec. 2.2, which the leading order
contribution is again

2h̄Kaa =
p3

c2

[
c4 −

3c23
c2

(1− p)− 5

3

c23
c2
p

]
EC (2.78)

assuming Ωs ≫ ωa while φ−,zpf ≪ 1 and φ+,zpf ≪ 1.
Instead of painstakingly reproducing the perturbation theory calculation to confirm all

the numerical factors, we can gain more intuition about the contributions to Kerr nonlinear-
ity by considering Feynman diagrams. In the diagrammatic language, the Kerr nonlinear-
ity of the the low-frequency mode can be represented as the fourth-order self-interaction
vertex. The example diagrams that contribute to the renormalization of this vertex are de-
picted in Figs. 2.4e and 2.4f.

The first diagram in Fig. 2.4e comes directly from the quartic term in the potential en-
ergy of the SNAIL element and is therefore proportional to the corresponding Taylor coef-
ficient c4. Including only this diagram results in Kaa ∝ c4, which is equivalent to the linear
participation ratio-based approach discussed previously in Sec. 2.2.

The interesting andnontrivial correction toK comes from the high-energy SNAIL mode,
and is represented by the second diagram in Fig. 2.4e. This term is equivalent to the sec-
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ond term in Eqs. 2.53 and 2.78, and it does not depend on Ωs as long as the requirement
Ωs ≫ ωa is satisfied. In the single-mode calculation, this contribution arose from imposing
current conservation Eq. 2.16 to the appropriate order of nonlinearity. In the two-mode
case, it arises from a second order perturbation theory correction when considering the
term (a+ a†)2(s+ s†) as the perturbation. The correction to Kaa from this term is

(
3c3
3!

EJ

)2

(
φ2
−,zpfφ+,zpf

)2
2h̄ω− +h̄ω+

≈ 6c23
EJ

4!

EJ

h̄ω+
p5(1− p)

ω+

ωa
φ6

zpf

=
3c23
c2

EJ

4!
p4(1− p)φ4

zpf (2.79)

where the approximation assumes Ωs ≫ ωa using Eqs. 2.73-2.74. In this limit, the cor-
rection indeed does not depend on Ωs. This is precisely the renormalization of the SNAIL
potential by the linear inductor as seen in c̃4 Eq. 2.30; and in diagrammatic language it
originates from a Wick contraction over the high-frequency degree of freedom (black line
in associated diagram of Fig. 2.4e).

The last diagram in Fig.2.4e depicts two cascaded c3 self-interactions of the low-frequency
mode. This is equivalent to the trivial second-order perturbation theory correction when
considering (a+a†)3 as the perturbation as calculated previously to generate the last term
of K (Eq. 2.53). As such, this correction only depends on φ−,zpf in the two-mode calcula-
tion.

In principle, there are other contributions to the renormalization of the fourth-order
self-interaction vertex. Some example one-loop processes are shown in Fig. 2.4f. How-
ever, such diagrammatic corrections are suppressed by a factor ∝ (φzpf)

2l where l is the
number of loops. We can further categorize these corrections: ones that include Wick con-
tractions over the high frequency (black) degree of freedom, and ones that do not. The ones
that do not will only contain red lines in the diagrams and thus only depend on φ−,zpf; they
will therefore be contained in the higher order corrections from the single-mode calcula-
tion visible in Eq. 2.51. The ones that do however will not necessarily be accounted for in
the single mode calculation and so to ignore them we insist φ+,zpf ≪ 1. In practice, this
condition is readily satisfied by fabricating junctions with EJ ≫ ECJ

. Note it is funda-
mentally difficult to achieve the opposite regime of large phase fluctuations [Masluk et al.
2012; Smith et al. 2020].

Finally, comparing the two electrical circuits in Figs. 2.2a and 2.4a, we see that the
single-mode circuit in Fig. 2.2a corresponds to taking the limit Cs → 0 for the one in
Fig. 2.4a. Rigorously taking this limit would lead to large quantum fluctuations of the
phase φ+, and the diagrammatic series would diverge. To ensure convergence, Cs still has
to be large enough to satisfy φ+,zpf ≪ 1. In this case, classical elimination of the fast degree
of freedom φ+ associated with the SNAIL plasma mode via current conservation Eq. 2.16
is justified insofar as the predictions of Kerr nonlinearity agree to leading order. If this is
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not the case, we may have to resort to more QFT-oriented approaches that have recently
been used to predict cross-Kerr nonlinearities [Kurilovich et al. 2021] and two-photon dis-
sipation [Co et, Leghtas, and Kontos 2020] in more mesoscopic systems where effective
Hamiltonians are often difficult to define.

Understanding these effects is important because the general approach for designing
circuit QED systems relies on pushing spurious modes up in frequency and then neglect-
ing their influence by arguing that the detuning to these modes is large. We have shown in
this chapter that the presence of these modes can influence low-energy observables, partic-
ularly the Kerr nonlinearity, and they must be accounted for either by means of full current
conservation, or equivalently by integrating out the high-energy modes.

2.5 Black-box quantization with SNAILs

In the preceding sections2.2 and2.4, wederived the Hamiltonian for two particular lumped
element circuits that include SNAILs as effective Josephson dipole elements. We further
saw how the low-energy dynamics of the la er two-mode circuit could be approximated
sufficiently by the former one-mode circuit. This theme is ubiquitous in superconduct-
ing circuits, and really physics generally. Given a lumped element circuit, we can solve
it, by brute force numerical methods if necessary. Clearly, this method quickly becomes
intractable for more than a handful of degrees of freedom. The relevant question then is to
ask for the simplest lumped element circuit that captures the dynamics at the energy scales
in which we are interested.

Moreover, physical circuits have physical geometries and the translation of those to
parameters of a lumped element circuit, or even which lumped element circuit to write
down, is not a priori obvious. Physicists and electrical engineers alike start with intuition
and then often resort to finite element methods to simulate classically the electromagnetic
response of a given linear network via the sca ering, impedance, or admi ance matrices.
This response can then be decomposed via a myriad of circuit synthesis methods commonly
employed for engineering microwave filters and impedance matching networks [Pozar
2012]. The engineer then combines these networks with the current-voltage relationship
of a lumped nonlinearity of choice (such as diodes or transistors) to design and optimize
the performance of, for instance, a mixer or an amplifier. The goal in superconducting
circuits is much the same: to design the desired response, be it for storage, manipulation,
or amplification of quantum information. So the methods should be similar.

Working purely with response functions can become cumbersome and devoid of intu-
ition, so we often wish to derive and manipulate Hamiltonians for our relatively lossless
circuits. From these quantized Hamiltonians, the relevant response functions correspond-
ing to different experiments or algorithms can then be derived or often intuited¹². We want

¹²Deriving such effective Hamiltonians is not always possible (e. g. for dynamics at energy scales larger
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to derive these Hamiltonians utilizing the full power of classical electromagnetic solvers.
Enter black-box quantization (BBQ) [Nigg et al. 2012].

BBQ at its heart solves exactly this problem: given a Josephson dipole element with a
linear environment characterized by the numerically simulated impedance Z[s], what is
the Hamiltonian? Simulating the impedance Z[s] over the desired frequency range can be
numerically tedious. Another form of BBQ based on energy participation ratios extracted
from eigenmode simulations¹³ can significantly speed up the design process [Minev et al.
2021]. These and related methods [Wallquist, Shumeiko, and Wendin 2006; Bourassa et
al. 2012] have been successfully used throughout cQED to predict the self- and cross-Kerr
nonlinearities of transmon-and-resonator systems, with a bit more care necessary in induc-
tively shunted circuits especially when phase fluctuations are not small [Smith et al. 2016].
The catch: care must also be taken when predicting higher-than-leading order nonlinearity
even when phase fluctuations are small. This is the manifestation of the renormalization
effect of the preceding examples in Secs. 2.2 and 2.4. The goal of this section is to min-
imally extend a BBQ-based simulation and circuit quantization procedure to include this
renormalization effect.

2.5.1 Foster decomposition of the environment

To this end, consider the circuit depicted in Fig. 2.5a that consists of a SNAIL with shunt-
ing capacitance Cs coupled to a linear electromagnetic environment characterized by the
impedance Z[s]. While we specify the discussion to a single SNAIL for concreteness, the
treatment here generalizes to arbitrary lumped inductive dipole elements, including ar-
rays of such. As in Sec. 2.4, we separate the SNAIL into its linear and nonlinear parts
(see Fig. 2.5b). The nonlinear part has the potential energy UNL(φ̃s) (Eq. 2.61) with φ̃s =

φs − φs,min. The condition φ̃s = 0 minimizes the potential of the full circuit unless the en-
vironment Z[s] resembles a short circuit at DC (mathematically, limω→0 Z[jω] = 0). This is
unlikely given large-area DC-connected loops should generally be avoided to reduce sus-
ceptibility to flux noise, and small-area loops can usually be incorporated into the definition
of the Josephson dipole (as we have already done with the SNAIL)¹⁴.

As guaranteed by Foster’s theorem, we next synthesize the impedance seen by the non-
linearity ZNL[s] into the equivalent circuit of a series combination of parallel LCR oscilla-

than the superconducting gap). In such cases, the response is the only physically meaningful quantity to
calculate and we must do so for each specific experimental measurement sequence.

¹³Eigenmode simulations here refers to solvers meant for relatively lossless systems that return a list of com-
plex frequencies corresponding to the poles of Z[s] instead of simulating the impedance or sca ering matrix
directly at a set of frequencies and employing interpolation techniques.

¹⁴If it is important to have a DC-connected Z[s] in this manner, we can always later enforce the loop con-
straint, find the global potential minimum, and shift all the the canonical coordinates. We avoid this here for
simplicity.
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Figure 2.5 | (a) SNAIL-mode with capacitance Cs and effective inductance Ls coupled to a
linear circuit characterized entirely by its linear electromagnetic response, the impedance
Z[s]. (b) Decomposition of (a) into an impedance ZNL[s] seen by the nonlinearity of the
effective dipole element with phase drop φ̃s = φs − φs,min. (c) Exact P -degree-of-freedom
Foster synthesis of ZNL[s] in terms of canonical branch phase φp across inductor Lp along
with capacitor Cp associated with each pole p. (d) Approximation of (c) after imposing a
high frequency cutoff Ωmax. There are Pmax < P degrees of freedom, each with frequency
ωp < Ωmax. All high frequency modes are summarized by the effective inductance L0

with associated branch phase φL. (e) After incorporating L0 in the nonlinearity, the now
renormalized nonlinearity sees impedance Z̃NL[s] = ZNL[s]− sL0.
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tors shown in Fig. 2.5. Explicitly,

ZNL[s] =

P∑
p=1

(
sCp +

1

sLp
+

1

Rp

)−1

=

P∑
p=1

Zp
s/ωp

(s/ωp)2 + s/ωpQp + 1
(2.80)

where in the second line we have rewri en in terms of the resonance frequency ωp =

1/
√

LpCp, the characteristic impedance Zp =
√
Lp/Cp and the quality factor Qp = Rp/Zp

for each complex pair of poles s, s∗ = ωp(−1/2Qp± j
√

1− 1/4Q2
p) ≈ ±jωp (approximation

corresponds to Qp ≫ 1). The summation runs over every pair of poles p up to the total
number of P modes in the physical environment. Using the loop through the nonlinearity
and each inductor with branch phase φp to constrain

φ̃s =

P∑
p=0

φp, (2.81)

we are free to quantize per the standard recipe and write the full Hamiltonian with P de-
grees of freedom.

2.5.2 Incorporating a high frequency cutoff

Unfortunately, the resultant Hamiltonian would be rather cumbersome since P is a large
(possibly infinite) number of modes. Moreover, any finite element electromagnetic simula-
tion will always require an upper frequency cutoff; it is intractable to simulate ZNL[s] at all
frequencies. As such, we must build this high frequency cutoff (call it Ωmax) into our quan-
tization procedure, but with care since we know high-energy modes can alter low-energy
observables as seen in Sec. 2.4.

We first organize our P degrees of freedom into the Pmax < P of them that we wish to
appear in our final Hamiltonian, each with ωp < Ωmax. For the remaining P −Pmax degrees
of freedom, we summarize their impedance at low frequencies as sLp/(1+Lps/Rp) ≈ sLp,
where the approximation implies Rp ≫ LpΩmax or the high quality factor limit¹⁵. After
implementing this cutoff,

ZNL[s] = sL0 +

Pmax∑
p=1

Zp
s/ωp

(s/ωp)2 + s/ωpQp + 1
(2.82)

¹⁵Effectively, this throws away P − Pmax poles on the real axis, each at s = −Rp/Lp, which play an incon-
sequential role in the dynamics in this limit.
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corresponding to Fig. 2.5d where

L0 =
P∑

p=Pmax+1

Lp (2.83)

= Ls −
Pmax∑
p=1

Lp (2.84)

summarizes the total series inductance seen by the nonlinearity due to now-ignored high-
frequency degrees of freedom. In the second line, we have used limω→0(ZNL[jω]/jω) =∑P

p=1 Lp = Ls corresponding to the case in absence of a galvanic short through Z[s].
Defining φL as the branch flux across the inductor L0, we notice the parallel to the

single-mode problem of Sec. 2.2; there exists an inductance L0 in series with the nonlin-
earity from an effective inductive dipole element that does not have its own capacitance
and thus is not an independent degree of freedom. In fact, se ing Pmax = 1 would exactly
correspond to the similar Foster decomposition of the circuit in Fig. 2.2a with the entire
SNAIL array as the effective nonlinear dipole ¹⁶. Thus, we expect that the nonlinearity in
this case must be renormalized by the presence of L0.

To this end, we define a new renormalized nonlinear dipole, depicted in Fig. 2.5e, that
sees the impedance

Z̃NL[s] = ZNL[s]− sL0 (2.85)

and has potential energy

ŨNL(φ̃NL, φs) =
1

2
EL0 (φ̃NL − φ̃s)

2 + UNL(φ̃s) (2.86)

where φ̃NL = φ̃s − φL is the branch phase across the renormalized nonlinearity, and φ̃s

remains to be eliminated. We eliminate φ̃s via current conservation at the node between
L0 and the nonlinearity. The resulting equation

0 =
∂ŨNL
∂φ̃s

= EL0(φ̃s − φ̃NL) +
dUNL
dφ̃s

(2.87)

implicitly determines the phase drop across our original nonlinearity φ̃s[φ̃NL] as a function
of the branch phase across the renormalized dipole, in exact accordance with Eq. 2.16.

Upon using this constraint to eliminate φ̃s, the resultant Lagrangian with Pmax degrees

¹⁶Taking the limitCs → 0 ofZNL[s] (Eq. 2.62) from the two-mode calculation recovers this one-mode Foster
decomposition.
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of freedom is

LPmax =

Pmax∑
p=1

(
Cpφ

2
0

2
φ̇p

2 − 1

2
ELpφ

2
p

)
− ŨNL(φ̃NL) (2.88)

ŨNL(φ̃NL) =
1

2
EL0

(
φ̃NL − φ̃s[φ̃NL]

)2
+ UNL(φ̃s[φ̃NL]) (2.89)

with the understanding that φ̃NL itself is eliminated by the loop constraint

φ̃NL =

Pmax∑
p=1

φp. (2.90)

2.5.3 Renormalizing the nonlinearity

Before quantization, we consider our new renormalized nonlinearity. We might be con-
cerned at first glance that ŨNL(φ̃NL) has quadratic terms, which would then linearly couple
our Pmax degrees of freedom; in fact, it does not. Upon reflection, intuitively this makes
sense given we already performed a pole decomposition of ZNL[s], so each mode’s coordi-
nate φp should be linearly uncoupled. Mathematically, inspecting the current conservation
Eq. 2.87, we see φ̃s[φ̃NL] = φ̃NL +O(φ̃2

NL) and thus ŨNL(φ̃NL) = 0 +O(φ̃3
NL), given we al-

ready removed the quadratic part of our original nonlinearity UNL(φ̃s).
To further inspect the nonlinearity in the regime of small phase fluctuations, we Taylor

expand the full potential about its global minimum, which we have conveniently arranged
to be φ1 = · · · = φp = · · · = φPmax = 0. Noticing that all of the higher-than-quadratic poten-
tial terms are only a function of the combination of coordinates given by φ̃NL Eq. 2.90, we
expand along this direction since partial derivatives along all others will vanish at higher
than order two. The resulting coefficients for the Taylor expansion of the full potential
along this direction are equivalent to c̃k = (1/EJ)(d

kŨNL/dφ̃
k
NL)|φ̃NL=0 for orders k > 2.

The first four are:

c̃3 = −xJ
d2φ̃s

dφ̃2
NL

[0] (2.91)

c̃4 = −xJ
d3φ̃s

dφ̃3
NL

[0] (2.92)

c̃5 = −xJ
d4φ̃s

dφ̃4
NL

[0] (2.93)

c̃6 = −xJ
d5φ̃s

dφ̃5
NL

[0] (2.94)

redefining xJ = LJ/L0 in direct analogy with Eqs. 2.19- 2.24. Again, the derivatives of the
implicit function φ̃s[φ̃NL] can be found by differentiating the current conservation Eq. 2.87,
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for example

dφ̃s

dφ̃NL
=

(
1 +

1

EL0

d2UNL
dφ̃2

s

)−1

. (2.95)

Defining the analogous participation ratio p = Ls/(Ls + L0) for the SNAIL nonlinear-
ity’s participation in the renormalized nonlinearity, we can express the Taylor coefficients
c̃k for the renormalized potential in terms of the bare ck of the single SNAIL potential:

c̃3 = c3 (2.96)

c̃4 = c4 − 3c23
EJ

EL0

= c4 −
3c23
c2

(1− p) (2.97)

c̃5 = c5 −
10c4c3
c2

(1− p) +
15c33
c22

(1− p)2 (2.98)

c̃6 = c6 −
10c24 + 15c5c3

c2
(1− p) +

105c4c
2
3

c22
(1− p)2 − 105c43

c32
(1− p)3 (2.99)

in agreement¹⁷ with Eqs. 2.29- 2.32. Again, we emphasize there are no a priori small pa-
rameters in these coefficients, especially when one of the modes with frequency aboveΩmax

that we eliminated participates highly in the SNAIL, for instance the SNAIL plasma mode
of Sec. 2.4.

2.5.4 Quantization

Now that we understand the structure of our potential and its nonlinearity, we perform a
Legendre transformation on LPmax Eq. 2.88, and canonically quantize to get the Hamilto-
nian

HPmax =

Pmax∑
p=1

(
4ECN

2
p +

1

2
ELpφ

2
p

)
+ ŨNL

Pmax∑
p=1

φp

 (2.100)

where
[
φp,Nq

]
= iδp,q, and Eq. 2.89 defines ŨNL(

∑Pmax
p=1 φp). Without further approxima-

tion, this Hamiltonian may now be numerically diagonalized, a more tractable task with
Pmax < P degrees of freedom.

We may also introduce standard bosonic creation and annihilation operators, defined
by φp = φp,zpf(ap + a†

p) and
[
ap,a

†
q

]
= δp,q, where φp,zpf = (2ECp/ELp)

1/4 is the zero
point fluctuations of the phase for mode p as seen by the renormalized nonlinearity. The

¹⁷The apparent difference in the pk dependence has be absorbed into the definition of the zero point fluc-
tuations for each mode; now the zero point fluctuations are those that the effective renormalized dipole sees,
whereas previously we wrote the fluctuations the SNAIL array sees.
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Hamiltonian in term of these operators is

HPmax =

Pmax∑
p=1

ωpa
†
pap + H̃NL (2.101)

H̃NL =
c̃3
3!
EJ

Pmax∑
p=1

φp,zpf(ap + a†
p)

3

+
c̃4
4!
EJ

Pmax∑
p=1

φp,zpf(ap + a†
p)

4

+ · · · (2.102)

with c̃k given by Eqs. 2.96–2.99 and truncation requiring φp,zpf ≪ 1. Further approxi-
mations, such as the dispersive approximation, and perturbation theory may now be ap-
plied in a similar manner to the derivation of effective self- and cross-Kerr nonlinearity in
Sec. 2.4, while remembering that cascaded third-order processes ∝ c̃23 tend to be the same
magnitude as the fourth-order one ∝ c̃4.

Hamiltonian Eq. 2.101 constitutes the major result of this section. It governs the dy-
namics of Pmax degrees of freedom, each with frequency below the imposed cutoff Ωmax,
and includes the renormalization of the nonlinearity due to modes above Ωmax; all of this
in terms of parameters extricable from classical electromagnetic simulations restricted to
below Ωmax. To further clarify how to extract these parameters, consider the decompo-
sition of ZNL[s] depicted in Fig. 2.5d. The parameters of the finite frequency poles (Lp,
Cp, Rp) may be extracted from near-resonance ∼ ωp simulations either through sca ering
simulations directly or eigenmode simulations, all below Ωmax as standard [Nigg et al.
2012; Minev et al. 2021]. The inductance L0 for renormalization is encoded on the low-
frequency slope of ZNL[s]: mathematically, limω→0(ZNL[jω]/jω) = L0 +

∑Pmax
p=1 Lp. Given

thatLs = L0+
∑Pmax

p=1 Lp in the absence of a galvanic short across the SNAIL,L0 may also be
extracted from eigenmode simulations as the difference between the total imposed lumped
inductance Ls and the sum of the extracted inductance from each pole Lp.

The extension of this procedure to the case of circuits with multiple Josephson dipole
elements follows directly from previous works [Nigg et al. 2012; Minev et al. 2021]. Each
inductive nonlinearity get its own port and the impedance ZNL[s] generalizes to the famil-
iar impedance matrix [Pozar 2012]. The poles of each diagonal element of the impedance
matrix are the same. Thus, ωp andQp are consistent across the circuit synthesis as seen from
each port. The characteristic impedances Zp, and consequently phase fluctuations φp,zpf,
depend however on the port. Similarly, the series inductance L0 depends on the port. As
such, the nonlinearity associated with each Josephson dipole element must be renormal-
ized independently. The relative weight and sign with which each eigenmode participates
in each renormalized dipole is then encoded in φp,zpf in the standard way¹⁸.

¹⁸Specifically, for each dipole, φp,zpf = ±(2ECp/ELp)
1/4 where the sign indicates the relative orientation
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In this way, we have updated the BBQ quantization procedure to include the renormal-
ization of the nonlinearity due to an imposed high-frequency cutoff. It is worth revisiting
the approximations we have made. The primary approximation in BBQ generally is ignor-
ing offset charges and phase slips. We further assumed the SNAIL acts as a lumped dipole
element with no internal degrees of freedom, at least below the cutoff frequency Ωmax. Fi-
nally, the renormalization procedure for the nonlinearity assumes φp,zpf ≪ 1 for all modes
p > Pmax in the same way as we saw in Sec. 2.4. Within these approximations however, we
insist that the Hamiltonian HPmax of Eq. 2.100 captures the dynamics for arbitrary phase
fluctuations for modes below the cutoff. Only truncation of H̃NL in Eq. 2.102 requires
the further assumption that φp,zpf ≪ 1 for all modes. Thus, we have a general framework
for deriving and designing the low-energy Hamiltonian of circuits with arbitrary lumped
Josephson dipole elements. The remainder of this thesis is dedicated to optimizing these
circuits and the radiation we apply to them for quantum information applications.

of the mode’s current through the nonlinearity, aligned or anti-aligned with a chosen convention.



3
Quantum-limited parametric amplifica-

tion
To control a quantum system, we require measurements that are faster than the rate at
which it loses the information in which we are interested. Often, as in the dispersive read-
out of superconducting qubits [Blais et al. 2004], the measurement apparatus translates the
desired information into distinguishing one emi ed coherent state from another. Photon
loss will inevitably increase the noise, so we need to amplify the signal before this happens
to protect the signal-to-noise ratio (SNR) from future photon loss. During this amplification
process, the SNR generally degrades and quantum mechanics bounds the minimum pos-
sible degradation. Reaching this quantum-noise limit places a difficult requirement on the
first amplifier of a precision microwave measurement chain, often accomplished with para-
metric amplifiers based on Josephson junctions. This chapter focuses on the requirements
for the first amplifier and how a new parametric amplifier based on SNAILs, the SNAIL
parametric amplifier (SPA), realizes them. We will show that the inclusion of SNAILs as
the three-wave-mixing nonlinearity of choice enables device performance impossible with
other forms of nonlinearity based on DC-SQUIDS: namely, Kerr-free three-wave mixing.
The mechanisms and optimizations explored here for parametric amplification are readily
applicable to other quantum information processing applications, including the stabiliza-
tion of Schrödinger cat states as in Chapter 4.

3.1 Requirements for first amplifier

Quantum-noise-limited Josephson parametric amplifiers [Vijay, Devoret, and Siddiqi 2009;
Aumentado 2020] are a key component in many precision microwave measurement se-
tups, such as for the readout of superconducting qubits [Johnson et al. 2012; Risté et al.
2012; Hatridge et al. 2013; Jeffrey et al. 2014; Walter et al. 2017], the high-sensitivity detec-
tion of electron spin resonance [Bienfait et al. 2016; Bienfait et al. 2017], and the search for
axions [Brubaker et al. 2017; Backes et al. 2021]. As the first component of a microwave
amplification chain, the main desired specifications for a linear Josephson amplifier are:

1. Low added noise: The noise added by the amplifier should be no larger than the
minimum imposed by quantum mechanics [Caves 1982; Caves et al. 2012].

2. High gain: The amplifier power gain G should be large enough to overwhelm the
noise temperature of the following amplification chain (in practice, at least 20 dB).

3. Large bandwidth: The amplifier gain should be constant over a bandwidth that is
large enough for the desired application.

39
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4. Large dynamic range: The output signal amplitude should be linearly proportional
to the input signal amplitude over a wide enough power range. The lower limit of
this power range should be defined by the quantum noise ideally se ing the signal-
to-noise ratio of the desired measurement.

5. Unidirectionality: The amplifier should, ideally, amplify signals incident from the
system being probed and isolate the signal source from spurious noise that propa-
gates back from subsequent devices in the amplification chain.

6. Ease of operation: The energy necessary for amplification should be delivered to the
amplifier in a simple and robust manner without requiring precise tuning.

7. Robustness of construction: The amplifier circuit should not require too delicate
tolerances.

Among these requirements, near-quantum-limited added noise is paramount in the
aforementioned applications where signal power cannot be further increased for either fun-
damental or technical reasons. Taking the dispersive readout of superconducting qubits as
an example, ideally the readout SNR scales linearly with the readout power [Blais et al.
2004]; however, in practice, higher order nonlinearities reduce readout fidelity at higher
powers [Sank et al. 2016], spurring exploration of alternative readout strategies [Campagne-
Ibarcq et al. 2016; Eddins et al. 2018; Touzard et al. 2019; Dassonneville et al. 2020]. As such,
no compromise should be made that reduces amplifier noise performance. Moreover, the
requirement for high gain with low added noise makes less stringent the noise tempera-
ture required by the second stage amplifier to maintain quantum-limited performance of
the entire measurement chain.

The bandwidth of Josephson parametric amplifiers is not large compared to the limit
set Bode-Fano criterion [Pozar 2012]. Thus far, it is often just large enough for single qubit
readout, but the center frequency is in situ tunable to align with the readout cavity, partially
making up for the lack of bandwidth. Impedance-matching structures have been employed
to increase the bandwidth for Josephson reflection amplifiers [Mutus et al. 2014; Roy et al.
2015], which may be understood in terms of traditional microwave filter theory [Getsinger
1963; Ma haei, Young, and Jones 1980; Naaman et al. 2019].

Large dynamic range is a particularly important requirement for scaling up supercon-
ducting qubit setups to larger size systems as multiplexing becomes necessary to reduce
the total number of output lines. The dynamic range characterizes the input power range
over which the amplifier behaves as a linear device for a single-tone or multitone input.
For quantum-limited amplifiers, the lower limit on dynamic range is set fundamentally
by quantum mechanics, so improving dynamic range corresponds to increasing the upper
limit. The upper limit is controlled by two distinct but closely related nonidealities in the
large-signal amplifier response. The first nonideality is the phenomenon of amplifier sat-
uration, also called gain compression. This limits the maximum output power that can be
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produced by the device for an arbitrary input signal. The second nonideality, which we
explore in this thesis, is the phenomenon of intermodulation distortion (IMD) for multitone
inputs, where the amplifier produces spurious tones on its output in addition to the desired
amplified copies of the input tones. Together, these two nonidealities limit the signal pow-
ers that can be processed by the amplifier and thus are a problem for faster or higher-power
qubit readout as well as for the readout of multiple qubits [Jeffrey et al. 2014].

The unidirectionality requirement is often enforced by a pair of ferrite-based microwave
circulators together with sufficient isolation to protect the quantum system of interest from
amplified noise propagating from the rest of the measurement chain. These ferrite circula-
tors limit the achievable noise performance and there is active work on replacing them with
superconducting counterparts [Naaman et al. 2016; Chapman et al. 2017]. Furthermore,
directional amplifiers based on the interference of multiple parametric processes hope to
replace reflection amplifiers [Abdo et al. 2013a; Sliwa et al. 2015; Lecocq et al. 2017; Lecocq
et al. 2021], and admit an intuitive graph-based description [Ranzani and Aumentado 2015]
that comes from a more general quantum theory of nonreciprocity [Metelmann and Clerk
2014; Metelmann and Clerk 2015]. Travelling wave parametric amplifiers (TWPAs) also
show promise for both large bandwidth and unidirectionality but still require additional
isolators between the system and first amplifier [Macklin et al. 2015; Vissers et al. 2016].

Finally, we note these requirements are specifically wri en for a linear amplifier whose
response amplifies the travelling input signal irrespective of the incident power within the
allowed dynamic range. Under these conditions, the amplification process inevitably adds
noise with the minimum possible given by Caves’ theorem [Caves 1982; Caves et al. 2012].
However, using prior knowledge about the structure of the signal, a nonlinear amplifier
may actually increase the signal-to-noise ratio by exploiting its nonlinearity to amplify the
signal more than the noise. This is the basis of readout via bifurcation amplifiers [Vijay,
Devoret, and Siddiqi 2009] or more generally those based on multiple instabilities [Wust-
mann and Shumeiko 2019]. In fact, we can view dispersive readout [Blais et al. 2004] in this
light as a nonlinear amplification of one qubit photon into a many-photon flying coherent
state. This amplification, like most nonlinear processes, requires fine tuning; there exists
an optimal cross-Kerr for a given resonator linewidth as well as an optimal frequency for
distinguishing between zero and one photon in the coupled qubit as opposed to between
one and two photons. As such, these strategies are amenable to single-qubit measurement,
but are difficult to multiplex to many qubits simultaneously.

3.2 Ideal degenerate parametric amplifier (DPA)

In this section, we focus on the model of an ideal degenerate parametric amplifier (DPA):
degenerate for the ability to have all the response occurring at a single frequency, parametric
for modulating a parameter in the Hamiltonian. This amplifier will have a single port and
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supply amplification in reflection; it will also achieve quantum-limited noise performance.

3.2.1 Input-output theory in the RWA

Before parametric amplifiers in particular, we pause to discuss input-output theory, an im-
portant tool for quantum optics and cQED alike with a rich history [Gardiner and Zoller
2004; Clerk et al. 2010; Vool and Devoret 2017]. In the context of single oscillator described
by bosonic creation a† and annihilation a operators with a Hamiltonian H, we may write
the quantum Langevin equation (QLE) within the rotating wave approximation (RWA) as

ȧ =
i

h̄
[H,a]− κ

2
a+

√
κain (3.1)

where κ is both the energy dissipation rate of the mode and the coupling to the environment
through the incoming transmission line annihilation operator ain(t), a direct embodiment
of the fluctuation dissipation theorem. Note that taking κ → 0 recovers the Heisenberg
equations of motion.

The transmission line operators associated with the single port have the commutation
relation [

ain(t),ain(t
′)†
]
= δ(t− t′) (3.2)

within the RWA, as well as the associated port boundary condition

√
κa(t) = ain(t) + aout(t) (3.3)

also known as the input-output relation. This formalism is fundamentally based on a role
reversal: instead of considering a circuit that loses and gains energy from the environ-
ment, we view the circuit as an elastic sca er of signals coming from the environment.
The environment consists of input-output ports, which may be controlled by the experi-
mentalist. Internal losses may be modeled as additional ports in the style of Caldeira and
Legge [Caldeira and Legge 1983] for which the experimentalist may not measure aout.
For a treatment beyond the RWA, please see the Appendix A and [Vool and Devoret 2017],
which themselves are based on [Gardiner and Zoller 2004].

3.2.2 Gain of a DPA

Having introduced input-output theory, we may now derive the sca ering properties of an
ideal degenerate parametric amplifier (DPA). We begin with a simple theoretical model of
the minimal quantum-limited DPA introduced by Haus and Mullen [Haus and Mullen
1962]. The detailed explanation of the model is readily available in comprehensive re-
views [Clerk et al. 2010; Roy and Devoret 2016] as well as intuitive explanations based
on skateboarding in a half-pipe [Aumentado 2020]. We also recommend an analysis of the
nonidealities associated with different energy-delivery or “pumping” schemes that con-
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tains a pedagogical introduction [Boutin et al. 2017]. Although our treatment here will
be wri en in terms of quantum operators, we emphasize that the fundamental mecha-
nism responsible for amplification comes from classical nonlinear physics; hence analo-
gies to skateboarding in a half-pipe are remarkably accurate. Predication of the amplifier’s
quantum-limited noise performance requires a quantum treatment only insofar as quan-
tum mechanics lower-bounds the total noise incident on the ports. The amplifier itself
simply mixes this incident noise.

Following [Boutin et al. 2017], we start with a phenomenological Hamiltonian in the
lab frame that we will later engineer with a desired circuit implementation,

H/h̄ = ωaa
†a+ χ(a†2ap + a2a†

p) (3.4)

where ωa is the oscillator frequency, χ is the nonlinearity, and a†
p (ap) is the creation (an-

nihilation) operator of an excitation in some pump mode intended to deliver the energy
necessary for amplification. In three-wave-mixing amplifiers, we deliver that energy with
a strong microwave tone incident on the pump mode at frequency ωp ≈ 2ωa. In the
regime where this pump is strong and stiff, we may treat it classically with the substitution
ap ≈ αpe

−iωpt effectively ignoring the fluctuations of the pump mode. This is effectively
a mean-field approximation and we are interested in the near-resonance effects about this
large pump field.

To eliminate the now explicit time dependence in the Hamiltonian, we apply a time-
dependant unitary transformation or equivalently the substitution a → ae−iωpt/2. This
generates the prototypical DPA Hamiltonian in the frame rotating at ωp/2

HDPA/h̄ = −∆DPAa
†a+ ϵ2a

†2 + ϵ∗2a
2 (3.5)

where ∆DPA = ωp/2 − ωa is the pump’s detuning from the resonance condition, and ϵ2

is the squeezing drive strength. When ϵ2 = 0, this system is a trivial harmonic oscillator
that responds to incident signals by simply reflecting them with an additional phase shift
depending on the signal’s detuning from resonance. For nonzero ϵ2, the oscillator’s ground
state is a squeezed state and the response acquires mixing capabilities. We quantitatively
investigate this response with the QLE Eq. 3.1 that includes the loss rate κ associated with
a single port:

ȧ = i
(
∆DPAa− 2ϵ2a

†
)
− κ

2
a+

√
κain

= i

(
∆DPA + i

κ

2

)
a− 2iϵ2a

† +
√
κain (3.6)

where we see that a and a† are now coupled through the squeezing drive. The correspond-
ing QLE fora† may be similarly derived or equivalently obtained by Hermitian conjugation
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Figure 3.1 | (a) Simple example circuit for a DPA: a single mode coupled to single trans-
mission line. (b) Lab frame frequency landscape to achieve parametric amplification. The
bare density of states (red) indicates the mode’s linear response centered at frequency ωa

with linewidth κ. When a strong microwave pump tone at frequency ωp modulates the
inductance (blue), the response (black) associated with a monochromatic input signal at
frequency ωp/2 + ω (solid gray) is symmetric about ωp/2 not ωa; the amplification process
generates an image tone at the frequency ωp/2 − ω (dashed gray). (c) Dependence of the
maximum phase-preserving power gain G = G[ω = 0] on squeezing drive strength ϵ2
when ∆DPA = 0 showing the parametric instability at |ϵ2| = κ/4. Dashed line indicates
squeezing strength for (d). (d) Input signal frequency dependence of gain G[ω] showing
near Lorenzian shape.

of the previous, so we have two coupled first-order differential equations of motion.
Taking the Fourier transform and using the boundary condition at the port given by

Eq. 3.3 to eliminate a in favor of aout, the sca ering or input-output relationship for the
output field

aout[ω] = −(ω −∆DPA + iκ/2)(−ω −∆DPA + iκ/2) + 4|ϵ2|2

(ω −∆DPA + iκ/2)(−ω −∆DPA − iκ/2)− 4|ϵ2|2
ain[ω]

− i2ϵ2κ

(ω −∆DPA + iκ/2)(−ω −∆DPA − iκ/2)− 4|ϵ2|2
ain[−ω]† (3.7)

= gs[ω]ain[ω] + gi[ω]ain[−ω]† (3.8)

where the frequency ω is defined in the rotating frame and corresponds to the signal fre-
quency ωs = ω + ωp/2 in the lab frame. Note the notation ain[−ω]† = (ain[−ω])† here cor-
responds to taking Hermitian conjugation after the Fourier transform [Boutin et al. 2017]
emphasizing that the response in the lab frame at ωs = ωp/2 + ω depends on radiation at
the image frequency ωi = ωp/2 − ω (see Fig. 3.1b); the opposite convention is often more
convenient for dealing with generalized coupling matrices, especially involving multiple
modes [Ranzani and Aumentado 2015].
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In the last line we defined the signal amplitude gain gs[ω] and the image amplitude
gain gi[ω], which obey the condition |gs[ω]|2 = |gi[ω]|2 + 1 enforcing a unitary squeezing
transformation between input and output fields [Caves 1982]. The phase of the squeez-
ing tunes with the phase of the squeezing drive ϵ2. When both the signal and image at
ωs/i = ωp/2 ± ω are within the measurement bandwidth, ain[ω] and ain[−ω]† coherently
interfere and the squeezing is evident in the higher moments of the statistics of the output
field [Castellanos-Beltran et al. 2008; Boutin et al. 2017]. This regime is often called phase-
sensitive or phase-coherent degenerate parametric amplification [Blackwell and Ko ebue 1961]
since the interference manifests as amplifying a single quadrature of the incident signal
and deamplifying the other.

In the opposite regime of phase-preserving or phase-incoherent degenerate parametric am-
plification, the measurement ignores the information at the image frequency. We may then
define the phase-preserving power gain G[ω] = |gs[ω]|2, which can be algebraically trans-
formed to

G[ω] = 1 +
|2ϵ2κ|2

(κ2/4 + ∆2
DPA − ω2 − 4|ϵ2|2)2 + (κω)2

(3.9)

which depend on the squeezing drive strength ϵ2 and the pump frequency through ∆DPA.
To achieve large power gain, the denominator of Eq. 3.9 must be close to zero. As seen
in Fig. 3.1c, the gain diverges as ϵ2 approaches

√
(∆2

DPA + κ2/4)/4, which is the hallmark
of parametric instability. For the linear parametric amplifier discussed in this chapter, we
restrict |ϵ2|2 < (∆2

DPA + κ2/4)/4 as the model breaks down beyond this value. To properly
model the dynamics above this threshold, we must include Kerr nonlinearity, which we
save for a detailed discussion in Chapter 4 or Appendix A.

The maximum gain occurs at ω = 0, corresponding to ωp/2 in the lab frame, and we
denote it G = G[0]. The profile of G[ω] is approximately Lorenzian, as shown in Fig. 3.1d
for an ϵ2 such that G = 100 = 20dB, and we define the bandwidth B as the full width
half maximum or the 3 dB bandwidth. From Eq. 3.9, we verify that this type of resonant
amplifier suffers from a gain-bandwidth trade-off

B
√
G =

√
κ2 + 4∆2

DPA. (3.10)

Although arbitrary ∆DPA may be in principle compensated for by increasing |ϵ2| in this
model, in practice higher order nonlinearities not wri en in Eq. 3.5 limit the applied pump
power. As such, usually we operate with ∆DPA ≲ κ and the bandwidth is limited to B ≈
κ/

√
G.

With an idea of the sca ering performance in phase-preserving mode, we may turn to
the noise performance¹. We have already made one crucial assumption necessary to reach
quantum-limited noise performance: namely, the DPA has no internal losses or, equiva-
lently, there is only a single port in the QLE Eq. 3.1 as depicted in Fig. 3.1a. A second port

¹Based off a summary in [Aumentado 2020]
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will allow signal to leak out, but the quantum-limit for total output noise will be the same
by unitarity of the sca ering matrix, clearly degrading the SNR (see [Boutin et al. 2017] for
example calculation). Given the single-port assumption, the total output noise spectrum
in the lab frame at ωs = ωp + ω

Nout[ωs] = G[ω]Nin[ωs] + (G[ω]− 1)Nin[−ωi] (3.11)

which is a combination of the input noise spectrum Nin from both the signal and the im-
age frequencies². For standard microwave engineering definitions [Pozar 2012], the noise
temperature in the large gain limit for a in-band signal is

Nout[ωs]/kBG[ω] ≈ (Nin[ωs] +Nin[−ωi])/kB. (3.12)

For superconducting parametric amplifiers, we often quote the noise added by the amplifier
referred to the input Nin[−ωi], which is determined at the image frequency. To reach the
quantum-limit, the input at the image frequency must be sufficiently idle ³ and given by
a 1D black-body spectrum with temperature T . When T ≪ h̄ωi/kB , possible at ∼ GHz
frequencies with helium dilution refrigeration, the added noiseNin ≈ h̄ωi/2, corresponding
to one-half-photon of added noise per unit bandwidth or the quantum limit [Caves 1982].

3.3 The SNAIL parametric amplifier (SPA)

Givenweunderstandhow the idealDPA fromSec.3.2 realizes the requirement for quantum-
limited amplification, we introduce the SNAIL parametric amplifier (SPA) as simple way
to implement a DPA with three-wave mixing [Fra ini et al. 2018]. We then investigate
the trade-offs between the different requirements in Sec. 3.1 and ask the question: is it
possible to improve the amplifier dynamic range without sacrificing other desirable char-
acteristics? In this section, which focuses on the work in [Fra ini et al. 2018], we answer
affirmatively by demonstrating systematic improvement of the SPA’s dynamic range. The
SPA is based on an array of SNAILs, which provides the flexibility needed to optimize
the three-wave mixing amplification process, while simultaneously minimizing the four-
wave-mixing Kerr nonlinearity suspected to cause amplifier saturation [Eichler and Wall-
raff 2014; Liu et al. 2017]. With this flexibility, we have engineered an SPA that achieves a
1-dB compression power (P−1dB ∈ [−102, −112]dBm for G = 20dB) on par with the best
quantum-limited resonant parametric amplifiers [Mutus et al. 2014; Eichler et al. 2014; Roy
et al. 2015], but over the entire tunable bandwidth of 1 GHz without sacrificing any other
desirable characteristics. Importantly confirming the noise performance, the SPA improved
the readout of a superconducting qubit, where the quantum efficiency of a phase-sensitive

²Derived by computing (a†
outaout)[ω] using Eq. 3.8 and rotating back to the lab frame.

³Hence, the term idler and image are often used interchangeably.
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measurement chain involving an SPA was measured to be η = 0.6 in a self-calibrated man-
ner [Touzard et al. 2019].

This demonstration of dynamic range improvement is crucially accompanied by first-
principles theory that elucidates the link between the physical realization of the amplifier
and the nonidealities of its response to large input signals. This link is accomplished in
two steps. First, we show how to map the physical layout of the SPA to the phenomeno-
logical parameters that enter the input-output description of the device. These parameters
consist of the three- and four-wave-mixing nonlinear components of the SPA Hamiltonian,
which we derived in a lumped-element approximation in Section 2.2, as well as the damp-
ing induced through coupling to an input-output port. Second, we describe and validate
experimentally how these phenomenological parameters directly determine the nonideal-
ities in the amplifier’s response to large input signals. Such a first-principles theoretical
description opens the door to further improvements in amplifier dynamic range, which
were recently achieved in SPAs [Sivak et al. 2019; Sivak et al. 2020] and further extended
to a kinetic-inductance-based implementation of a DPA [Parker et al. 2021]. Furthermore,
the optimizations applied here for increased dynamic range may be directly applied to in-
crease the photon number of Schrödinger cat states used to store quantum information,
which we will explore in detail starting in Chapter 4. More broadly, many forms of para-
metrically induced mixing for quantum-information processing may similarly benefit from
these optimizations: for instance, frequency conversion for nonreciprocal devices [Sliwa et
al. 2015; Lecocq et al. 2017], remote entanglement protocols [Pfaff et al. 2017; Axline et al.
2018; Kurpiers et al. 2018; Campagne-Ibarcq et al. 2018; Burkhart et al. 2021], gates between
bosonically encoded qubits [Gao et al. 2018; Gao et al. 2019], and quantum simulation with
bosons [Wang et al. 2020] to name a few recent examples.

3.3.1 SPA physical realization

In order to realize the ideal mixing Hamiltonian 3.5 of the DPA, we require nonlinearity
and a single degree of freedom coupled to an input-output port. For previous three-wave
mixing implementations of degenerate Josephson parametric amplifiers, flux-pumped DC-
SQUIDs [Yamamoto et al. 2008; Zhou et al. 2014; Simoen et al. 2015] or RF-SQUIDs [Yurke
et al. 1989; Zorin 2016] supply the nonlinearity. As the name implies, SNAILs supply the
nonlinearity in the SPA. Depicted in Fig. 3.2a, a prototypical SPA is realized by placing M

SNAILs at the center of a λ/2 section of microstrip transmission line. Fig. 3.2b shows an
array of M = 20 SNAILs, where each SNAIL consists of an array of three large Joseph-
son junctions (each inductance LJ ) in a loop with one smaller junction (inductance LJ/α)
as defined in Sec. 2.1. In practice, we chose the smallest LJ that was still larger than the
parasitic geometric inductance of the 24µm perimeter SNAIL loop such that the geomet-
ric inductance may be ignored in the derivation of the SNAIL potential Eq. 2.2. Adding
appreciable geometric inductance compared to LJ would interpolate between the SNAIL
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Figure 3.2 | (a) Optical microscope image and (d) corresponding circuit model of a SNAIL
parametric amplifier (SPA). An array of M SNAILs is inserted at the center of a λ/2 section
of microstrip transmission line, colored red in (d). (b) Image of an array ofM = 20 SNAILs.
(c) Electron micrograph of a single SNAIL with three larger junctions (each inductance LJ )
in a loop with one smaller junctions (inductance LJ/α). Arrows indicate the junctions and
the purple inset of (d) gives the SNAIL circuit schematic. In (d), φs denotes the phase drop
across each SNAIL’s small junction. The node phase φl (φr) denotes the location where
the left (right) side of the array of SNAILs connects to the linear embedding structure. The
dissipation rate κ is set by the capacitive coupling with cap Cc to the transmission line.

and RF-SQUID potentials, which both implement three-wave-mixing dipoles in their own
right, at least assuming we respect the new condition to avoid hysteresis that the LJ/α

is larger than the sum of all other inductance in the loop. Experimentally, avoiding this
complication is convenient so that room temperature resistance is still a good proxy for
total inductance without having to carefully calibrate the geometric inductance. The elec-
tron micrograph in Fig. 3.2c shows a representative SNAIL with junctions fabricated via a
Dolan bridge process [Dolan 1977] for aluminum (Al) on silicon (Si).

The microstrip transmission-line sections are formed by a 2-µm-thick silver (Ag) layer
deposited on the back of a 300-µm-thick high-resistivity Si wafer to act as a ground plane,
and by center traces of Al whose length lMS and width wMS adjust the frequency ω0 and the
characteristic impedance Zc. For all SPA devices presented here, we held the microstrip
width constant at wMS = 300µs to set Zc = 45Ω, and adjusted lMS (in conjunction with M ,
α and LJ ) to set the operating frequencies of the devices (see Sec. 3.3.3). The coupling to
the 50Ω transmission line κ used as the signal input-output port is set by an interdigitated
gap capacitor (capacitanceCc) at one end of the SPA resonator. Later devices (E in Table 3.1
and [Sivak et al. 2019]) also have a second weakly capacitively coupled port on the opposite
end of the resonator for delivery of the pump (not shown in Fig. 3.2a). Similarly fabricated
microstrip resonators, but without any Josephson junctions, were measured to have inter-
nal quality factors ≈ 3000, consistent with the limitation imposed by the normal metal Ag
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Table 3.1 | Constitutive parameters of 5 devices measured in the experiment: Josephson
inductance of largest junction (LJ ), number of SNAILs (M ), junction inductance ratio (α),
coupling capacitance to the 50Ω transmission line (Cc), and frequency of the λ/2microstrip
embedding structure when the array of SNAILs is replaced by a short (ω0).

Device LJ (pH) M α Cc (pF) ω0/2π (GHz)
A 60 1 0.29 0.048 8.4
B 67 10 0.29 0.039 11.4
C 47 20 0.09 0.068 17.9
D 44 20 0.09 0.075 23.5
E 34 20 0.09 0.088 23.4

backplane. By design, κ is much larger than this internal dissipation rate and the coupling
to the pump port: an important requirement for achieving quantum-noise-limited perfor-
mance.

The experimental characterization of the SPA devices (and all devices in this thesis)
was performed in a helium-dilution refrigerator with base temperature of approximately
20mK and sufficient a enuation on the input lines from room temperature to ensure the in-
cident radiation noise was quantum-limited at the frequencies within the amplifier’s band-
width [Krinner et al. 2019]. Reflection measurements off of the SPA were performed using
a directional coupler to route the output signal to a standard cryogenic amplification setup;
a microwave circulator would normally be used instead in future applications (e. g. qubit
readout). While cold, a magnet coil mounted beneath the sample applies a magnetic flux Φ

to each SNAIL, which we assume to be uniform across the array. All measurements were
performed with a PNA-X network analyzer⁴, which contains two microwave sources and
the capability to quickly perform intermodulation distortion measurements. The strong
pump tone needed for amplification was either combined with the signal tone at room
temperature or applied on a separate pump line.

3.3.2 SPA model

The device is modeled with the circuit schematic of Fig. 3.2d. As in Sec. 2.1, we treat
each SNAIL as a nonlinear inductor that provides an asymmetric potential energy US(φs)

Eq. 2.2 and corresponding current-phase relation IS(φs) Eq. 2.3, where φs is the phase
drop across the small junction of the SNAIL. These functions are engineered via the junc-
tion inductance ratio α and the externally applied magnetic flux Φ. To include the linear
embedding circuit, we enforce current conservation at the left and right boundary nodes of
the SNAIL array (phases denotedφl andφr in Fig. 3.2d), which are connected to the ends of
the respective transmission lines. As shown in the lumped element model in Sec. 2.2, prop-
erly handling this constraint equation is crucial for the prediction of higher-than-leading

⁴PNA-X network analyzer model Keysight N5242A.



3.3 | The SNAIL parametric amplifier (SPA) 50

order Hamiltonian terms such as Kerr.
While the lumped element model in Sec. 2.2 accurately models devices with either low

or high participation ratios p, a distributed element model presented in Sec.A.3 is necessary
to accurately capture the flux-dependence of Hamiltonian parameters in devices that cross
over from small p atΦ/Φ0 = 0 to near-unity p atΦ/Φ0 = 0.5. To understand why, we exam-
ine the equation that implicitly determines the resonance frequency ωa for the distributed
element model:

ωa tan
(
π

2

ωa

ω0

)
=

2Zc

MLs(Φ)
(3.13)

whereω0 is the frequency of the λ/2microstrip embedding structure when the SNAIL array
is replaced by a short circuit, and Zc is the microstrip’s characteristic impedance. Clearly,
this does not match the lumped element frequency prediction ωa = 1/

√
C(MLs + L)

Eq. 2.41 for arbitrary Ls(Φ). However, in the limit of small p or unity p corresponding
to MLs ≪ Zc/ωa and MLs ≫ Zc/ωa respectively, the solution to Eq. 3.13 maybe be ap-
proximated by Eq. 2.41 for a suitable choice of L and C.

After quantization of the distributed element model, we express the Hamiltonian of the
lowest frequency mode of the SPA up to fourth order as

HSPA/h̄ = ωaa
†a+ g3

(
a+ a†

)3
+ g4

(
a+ a†

)4
(3.14)

wherea† (a) is the harmonic oscillator creation (annihilation) operator obeying
[
a,a†

]
= 1,

ωa is the resonant frequency of the standing mode, and the third- and fourth-order non-
linearities are denoted g3 and g4 respectively. These three Hamiltonian parameters are all
tuned in situ via the applied magnetic flux Φ through each SNAIL loop. Along with the
coupling rate to the transmission line κ, the parameters of HSPA determine behavior of the
SPA as a degenerate parametric amplifier as we show next.

Pumping an SPA for gain

To operate the SPA as a three-wave-mixing DPA, we apply a strong pump tone at ωp =

2(ωa +∆) ≈ 2ωa with mean intracavity amplitude αp. We wish to analyze the response of
incident signals so we first seek an effective Hamiltonian of the oscillator in the presence of
this strong pump tone. To accomplish this, we displace the oscillator by αpe

−iωpt and with
foresight move to a rotating frame at ωp/2, which, within the rotating wave approximation
(RWA), corresponds to the substitution

a → ae−iωpt/2 + αpe
−iωpt (3.15)
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into the SPA Hamiltonian HSPA Eq. 3.14. The cubic term in the Hamiltonian responsible
for three-wave mixing transforms

g3

(
a+ a†

)3
→ g3

(
ae−iωpt/2 + αpe

−iωpt + a†e+iωpt/2 + α∗
pe

+iωpt
)3

= 3g3

(
αpa

†2 + α∗
pa

2
)
+Hrotating(t)/h̄

≈ 3g3

(
αpa

†2 + α∗
pa

2
)

(3.16)

where in the second line we grouped the terms into the rotating ones with explicit time
dependence, and those resonant terms that are static. Taking the time average over a drive
period makes the RWA and results in an effective time-independent Hamiltonian term cor-
responding to a single-mode squeezing Hamiltonian, the crucial term for parametric am-
plification in a DPA as in Eq. 3.5.

Continuing this procedure for the remaining terms in HSPA, we arrive at the effective
Hamiltonian in the frame rotating at ωp/2

HSPA,eff/h̄ = −∆DPAa
†a+ ϵ2a

†2 + ϵ2a
2 +Ka†2a2 (3.17)

which we identify as the effective DPA Hamiltonian Eq. 3.5 but with the addition of a spu-
rious Kerr nonlinearity⁵. This Kerr term is not innocuous and has serious consequences for
the dynamic range of various pumped processes, especially amplifier saturation as we will
explore in detail. For further example, the photon-number-dependent rotation of phase
space caused by Kerr leads to the distortion of quantum states of light in a microwave cav-
ity at the level of a few photons [Kirchmair et al. 2013; Vlastakis et al. 2013] as well as the
“bananization” of squeezing [Boutin et al. 2017; Malnou et al. 2018]. Moreover, the nonlin-
earity is crucial for regulating the dynamics above the parametric instability threshold by
stabilizing Schrödinger cat states, which we examine in detail in Chapter 4.

How do the parameters in the effective HamiltonianHSPA,eff relate to the drive strength
αp and the bare Hamiltonian HSPA? In principle, the above analysis generates this map-
ping, but the RWA here is not valid because the pump frequency ωp ≈ 2ωa is detuned from
the oscillator frequency by ≈ ωa itself. There exist many perturbative methods for going
beyond the RWA, which have been recently summarized and extended [Venkatraman et al.
2021]. In Appendix A, we use one such semiclassical method based on harmonic balance. To

⁵In this section, we ignore the small Lamb shift such that s = −κ/2± jωa denote the complex pair of poles
of the unpumped SPA’s small signal response.
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second order, it generates the same effective Hamiltonian with parameter mapping

∆DPA(|αp|2) ≈ ∆−

(
32

3
g4 − 28

g23
ωa

)
|αp|2 (3.18)

ϵ2(αp) ≈ 2g3αp (3.19)

K(|αp|2) ≈ 6

(
g4 − 5

g23
ωa

)
+O(|αp|2) (3.20)

where ∆ =
ωp

2 − ωa is the bare pump detuning, ∆DPA now includes the pump-induced
Stark shift, the squeezing strength ϵ2 has a new combinatorial prefactor but is otherwise
unchanged from the RWA calculation, and K(0) = K from our second-order perturba-
tion theory calculation Eq. 2.53 in the undriven circuit. Note, these pump-induced Stark
shifts are suspected to limit the achievable gain in multipumping schemes for directional
amplification [Sliwa et al. 2015; Lecocq et al. 2017] and their corollary in traveling-wave
parametric amplifiers (TWPAs) deteriorates phase matching [O’Brien et al. 2014; Macklin
et al. 2015; Vissers et al. 2016; Ranzani et al. 2018; Planat et al. 2020].

Given the pumped SPA implements a similar effective Hamiltonian to the DPA, we
might expect the SPA to also perform quantum-limited parametric amplification. To an-
alyze the response to an incoming signal at frequency ωs, in Appendix A we write the
QLE without the RWA [Gardiner and Zoller 2004] and utilize the input-output formalism
within a semiclassical⁶ harmonic balance approximation to derive the phase-preserving
power gain of the SPA. Assuming ωs is near ωp/2 and that there are |αs|2 signal and |αi|2

idler intraresonator average steady-state photons due to the incident signal, we find

G[ω] = 1 +
4|ϵ2|2κ2(

(∆i − ω)(∆s + ω) + κ2/4− 4|ϵ2|2
)2

+ (∆i −∆s − 2ω)2κ2/4

≈ 1 +
4|ϵ2|2κ2(

∆2
s − ω2 + κ2/4− 4|ϵ2|2

)2
+ ω2κ2

(3.21)

where ω = ωs−ωp/2, ∆s/i(|αp|2, |αs|2, |αi|2) = ∆DPA(|αp|2)−K(|αp|2)× (|αs/i|2+2|αi/s|2)
and in the last line we have used ∆i ≈ ∆s in the large gain limit where |αi|2 ≈ |αs|2.

The gain in this limit exactly reproduces the DPA gain Eq. 3.9 but with an effective
detuning that includes the Stark shift induced by both the amplification pump and the
incident signal. Note that maximum gain G always occurs at ωs = ωp/2, similar to a flux-
pumped JPA [Yamamoto et al. 2008; Zhou et al. 2014; Simoen et al. 2015], making the SPA
particularly easy to tune up and operate. This property is in contrast with the tuneup
procedure for Josephson parametric converters (JPCs) and even four-wave-mixing JPAs,
as outlined in Refs. [Liu et al. 2017] and [Hatridge et al. 2011] respectively.

⁶Semiclassical refers to the assumption |αs|2 ≫ 1 and |αi|2 ≫ 1, satisfied for any high-gain amplifier even
for single-photon level incident signals.
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a
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Figure 3.3 | (a) Resonant frequency ωa as a function of applied magnetic flux Φ for three
devices. Solid lines are fits a model based on the schematic in Fig. 3.2d. (b) Inductive
participation of the SNAIL array p = MLs/(MLs + L) extracted from the model.

As shown by Eq.3.21, designing an amplifier operating atωs reduces to engineeringωa,
g3, g4, and κ. This task is accomplished by the appropriate choice of the physical knobs de-
scribed in Sec. 3.3.1. To illustrate control over these Hamiltonian parameters and provide
intuition on this mapping, we compare the set of devices listed in Table 3.1. Throughout
this chapter, we will choose ωp = 2ωa for simplicity, but intentionally detuning the pump
can be a useful tool for achieving Kerr-free three-wave mixing [Sivak et al. 2019].

3.3.3 SPA Hamiltonian characteristics

Resonant frequency tunability

We first compare the linear-response characteristics of these devices, specifically the reso-
nant frequency ωa as a function of applied magnetic flux Φ shown in Fig. 3.3a. The tun-
ability range of ωa depends on two factors:

1. the flux-tunable SNAIL inductance Ls(Φ),

2. the participation of the SNAIL array in its embedding structure.

Multiple physical knobs affect both of these factors; here for simplicity we focus on the
influence of α and M .

The first factor, the flux dependence of Ls(Φ), is strongly analogous to that of a DC-
SQUID or an RF-SQUID [Clarke and Braginski 2004]: the inductance is tunable between
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a minimum at Φ/Φ0 = 0 and a maximum at Φ/Φ0 = 0.5. The range of this tunability is
given by the asymmetry between the inductance in either arm of the superconducting loop
which, in the SNAIL, is controlled by the junction inductance ratio α. α = 1/n, where n

is the number of large junctions as in Sec. 2.1, corresponds to perfect inductive symmetry,
resulting in Ls(0.5Φ0) → ∞. α > 1/n causes the SNAIL to have multiple inequivalent
potential minima and results in hysteretic behavior, which we wish to avoid in a weakly
nonlinear oscillator for amplification. α < 1/n gives some asymmetry, where smaller α

corresponds to a smaller inductive tunability range.
The second factor influencing the tunable range of ωa is the fraction of the mode in-

ductance coming from the SNAILs, summarized by the participation ratio, given by p =

MLs/(L+MLs) in the lumped element model. For a given SNAIL design with an Ls(Φ),
the participation ratio is controlled by the number of SNAILs M in series as well as the
length lMS and width wMS of the surrounding microstrip embedding structure. In practice,
M provides more control over ωa due to the practical difficulty in realizing microstrip (or
any linear) embedding structures with impedances significantly different from 50Ω. Thus,
M and α are chosen first and then we adjust lMS (while keeping wMS fixed in these devices)
to hit our desired operating frequency range.

Focusing on the Φ dependence of ωa in devices B and C in Fig. 3.3a, we see the ability
of α and M to engineer the frequency tunability. For α = 0.29 as in device B, the total
inductance on either arm of the SNAIL are nearly equal so the SNAIL inductance changes
drastically from Φ/Φ0 = 0 to Φ/Φ0 = 0.5. Conversely, the inductance of each α = 0.09

SNAIL in device C changes only a li le and the aggregation of these small changes for
all 20 SNAILs gives the device its approximately 1 GHz of tunability, nearly a factor of 5
larger than typical values for JPCs [Schackert 2013; Flurin 2015]. This 1 GHz of tunability is
achieved while also maintaining a nearly constant participation ratio as shown in Fig. 3.3b,
which will have important consequences for the flux dependence of g3 and g4 in the next
section.

Nonlinear characteristics

Having described the linear response of the SPA resonator, we next demonstrate its opera-
tions as a three-wave-mixing DPA. We applied a strong microwave pump tone at ωp = 2ωa

and adjusted the pump power to achieve a maximum of 20dB of small-signal reflection
gain. The near Lorenzian signal frequency dependence is shown for a representative bias
point in Fig. 3.4a, conforming to the prediction of Eq. 3.21 at least for the band around the
peak gain at ωp/2. One standard phenomenon that limits amplifier quality is the satura-
tion of the gain with increasing input signal power. As shown in Fig. 3.4b, we measured
the input-referred 1-dB compression point P−1dB as the input signal power where the gain
drops by 1 dB. To understand this phenomenon and increase the P−1dB, we perform a sys-
tematic study across multiple devices.



3.3 | The SNAIL parametric amplifier (SPA) 55

a

c

b

Figure 3.4 | (a) Reflection gain versus input signal frequency when the SPA is biased with a
strong tone at ωp ≈ 2ωa, frequency landscape inset of (c). (b) Gain G as a function on input
signal power shows amplifier saturation. Input power at which the gain reduces by 1 dB
is denoted P−1dB. (c) Third-order nonlinearity g3 versus applied magnetic flux Φ. Solid
curves are first-principles theory for g3.

Toward this goal, we measure the nonlinearity of the SPA Hamiltonian HSPA Eq. 3.14
as a function of applied flux Φ for all devices in Table 3.1. The dependence of the third
order nonlinearity g3 on Φ is shown in Fig. 3.4c for three representative devices. We ex-
tract g3 by tuning of a G = 20dB gain point and using the measured values of ωa and
κ as well as a calibration on the applied pump power. Also shown is our first-principles
theory calculation, which uses only the linear characteristics fit from Fig. 3.3a and room-
temperature measurements of the resistance of the SNAIL array. A global scale factor of
≈ 2 has been applied to the extracted g3, which could arise from pump-power calibration
or the enhanced coupling of the pump to the SNAILs through higher-frequency modes not
considered in our simple model.

Comparing devices A and C, we note the relatively constant g3 for device C (α = 0.09)
except near Φ/Φ0 = 0 and Φ/Φ0 = 0.5, where symmetry forbids three-wave mixing terms.
In contrast, device A (α = 0.29) shows two orders of magnitude variation in g3 over the
same flux range. This comparison highlights the drastic difference in the flux profile of
g3 possible by choices in design parameters. Here, the difference mainly arises from the
junction inductance ratio α causing a stark difference in the participation ratio p versus Φ
(see Fig. 3.3b), and that g3 depends strongly on p as in Eq. 2.45.

The fourth-order nonlinearity g4 is extracted from a Stark shift measurement. In this
experiment, we applied a strong approximately 500 MHz detuned drive that populates the
resonator with n̄ average steady-state photons and shifts its resonant frequency. Here, n̄
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Figure 3.5 | (a) Frequency shift∆ωa versus the number of steady-state photons populating
the resonator n̄ induced by a detuned drive tone at ωd [inset of (b)]. The measured shift is
plo ed for a few different applied magnetic fluxes Φ (denoted with color). Solid lines are
fits to ∆ωa = 4Kn̄+18K ′n̄2. (b) Magnitude of the extracted anharmonicity |2K| as a func-
tion of applied magnetic fluxΦ. Solid lines are first principles theory for the anharmonicity
|2K|.
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Table 3.2 | In situ tunable range of phenomenological parameters of five devices mea-
sured in the experiment: resonant frequency (ωa), coupling to the 50Ω transmission line
(κ), third-order nonlinearity (g3), and fourth-order nonlinearity (g4) where we quote the
average for devices C, D, and E disregarding the 0.1Φ0 region around the Kerr-free point.
All parameters given in MHz, except for ωa/2π in GHz.

Device ωa/2π (GHz) κ/2π (MHz) |g3|/2π (MHz) |g4|/2π (MHz)
A <6 – 7.84 35 – 55 0.3 – 30 0.001 – 4.9
B <4 – 7.51 30 – 35 0.5 – 60 0.006 – 0.5
C 5.99 – 7.24 90 – 120 0.4 – 1.5 0.004
D 7.09 – 8.37 180 – 250 0.5 – 1.8 0.003
E 7.76 – 9.24 270 – 440 0.7 – 2.0 0.004

is calibrated using fits of ωa, κ, and room-temperature line a enuation. In Fig. 3.5a, we
plot the measured frequency shift ∆ωa of a typical SPA resonator as a function of n̄ and
applied magnetic flux Φ (color). The frequency shift changes from negative to positive
over half of a flux quantum, indicating a Kerr-free region at some flux. The solid lines are
fits to ∆ωa = 4Kn̄ + 18K ′n̄2. From this fit, we extract the Kerr nonlinearity K as defined
in Eq. 3.20, which is related to Hamiltonian parameters g3 and g4 up to second order in
perturbation theory by K = 6(g4 − 5g23/ωa) as derived in Eq. 2.53.

The dependence of K and thus g4 on Φ is shown in Fig. 3.5b for three representative
devices together with our first-principles theory calculation. The contrast between device
A and C again highlights the effect of α on the flux profile. Specifically, device A shows a
three order of magnitude change in anharmonicity 2K, while device C’s anharmonicity is
relatively constant over most of the flux range. Additionally, both devices nominally sup-
port a region of suppressed Kerr. However, device A a ains this region over a very narrow
flux range, making the suppression regime practically useless, while device C shows a ro-
bust suppression regime by more than an order of magnitude from its Φ/Φ0 = 0 value.
The precise flux at which 2K = 0 depends on α and the series linear inductance through
the participation ratio p as seen in Eq. 2.53. this suppression could be useful in application
where the circuit design wants some nonlinearity for mixing purpose, but would prefer to
suppress spurious Kerr interactions.

Such Kerr suppression at low power is a robust feature of devices based on SNAILs with
α ≈ 1/n2 [Fra ini et al. 2018; Sivak et al. 2019; Sivak et al. 2020] and has also recently been
achieved in amplifiers based on shunted-JRMs [Chien et al. 2020]. While devices based
on RF-SQUIDs should similarly show a Kerr-free flux-bias point [Zorin 2016], any device
based on DC-SQUIDs is incapable of such a suppression point. Additionally, gradiometric
SNAILs show promise in extending the Kerr-free point to a continuum of different operat-
ing frequencies.

While our previous comparison of devices A–C focused on the flux profile of g3 and
g4, their overall magnitudes must also be engineered for optimizing amplifier nonideal-
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ities, such as saturation power. Besides α and LJ , these magnitudes are also influenced
by the number of SNAILs M , on which we focused in Sec. 2.3. To recap, at small values,
increasing M strongly affects |g3| and |g4|, but we note its influence substantially weakens
forM ≳ 20. In fact, decreasing Kerr by more than a factor of 2 requires increasingM > 200

when practical design constraints are considered; only at M ≈ 2000 does the suppression
factor become 10 for a mode at the desired operating frequency [Sivak et al. 2020]. As such,
subsequent devices (D, E and [Sivak et al. 2019]) have similar magnitudes of nonlinearities
and flux profiles to device C, but instead vary the coupling to the transmission line κ. A
summary of these phenomenological parameters for all devices is given in Table 3.2. As
we show next, these factors affect the gain compression.

3.3.4 SPA dynamic range

Gain compression

Having established the connection between the physical parameters of our device and the
properties of HSPA Eq. 3.14, we now optimize the nonlinearities (g3 and g4) and the cou-
pling to the transmission line (κ) to achieve higher dynamic range. But first, we review the
cause of amplifier saturation.

The gain of an ideal DPA Eq. 3.9 shows no dependence on input signal power in ac-
cordance with a perfectly linear amplifier, and therefore does not capture the phenomenon
of amplifier saturation that is clearly evident in the example Fig. 3.4b. However, the SPA
gain Eq.3.21 that we derived indeed depends on input signal power through the detunings
∆s/i(|αp|2, |αs|2, |αi|2), which themselves depend in the average number of steady state sig-
nal/idler photons |αs/i|2.

Considering the on resonance response G[ω = 0], we see that we can tune the pump
strength αp and thus ϵ2 (Eq. 3.19) such that the denominator of Eq. 3.21 goes to 0 and
the gain G = G[0] diverges. Resonant parametric amplifiers operate very close to this
parametric instability, with ϵ2 chosen such that the small-signal gain denoted G0 = 20dB
in this work, or sufficiently high for the desired application. As a result, slight changes in
this denominator are enough to significantly affect the gain G, altering it from its small-
signal value G0.

Two causes of gain compression can be associated with changes in the denominator of
Eq. 3.21:

1. Kerr-induced Stark shifts: shifts in ∆s/i with increasing signal power. More signal
power increases αs and shifts the resonant frequency due to Kerr K(|αp|2), defined
in Eq. 3.20.

2. Pump depletion: the breakdown of the stiff-pump approximation that αp and thus
ϵ2 and ∆DPA can be considered constant (see Eqs. 3.18–3.19).
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Focusing first on Kerr-induced Stark shifts, we now derive a closed form expression for
the on-resonance input signal power Pin at which the gain changes from G0 to G. Ignoring
pump depletion for now, we work in the approximation that αp is independent of signal
power Pin, often termed the stiff-pump approximation [Kamal, Marblestone, and Devoret
2009; Roy and Devoret 2018]. Using input-output theory, we can establish the relation
betweenPin and intraresonator populations |αs/i|2. For large gainG ≫ 1, we obtain |αs|2 ≈
|αi|2 ≈ GPin/h̄ωaκ with relative error δ(|αs|2)/|αs|2 ∼ 1/

√
G. In this approximation, we

have

G ≈ 1 +
4|ϵ2|2κ2(

∆2
s + κ2/4− 4|ϵ2|2

)2 (3.22)

G0 ≈ 1 +
4|ϵ2|2κ2(

∆2
DPA + κ2/4− 4|ϵ2|2

)2 (3.23)

where in the second line we have used ∆s/i(|αp|2, 0, 0) = ∆DPA(|αp|2) for the small-signal
gain (see Eq. 3.18) and

∆s ≈ ∆DPA − 6K
GPin
h̄ωaκ

. (3.24)

Plugging in the result forG into Eq. 3.24 and eliminating ϵ2 in favor ofG0, the input power
at which the gain becomes G

Pin =
h̄ωaκ

2

6KG

∆DPA
κ

±

√√√√∆2
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κ2

+

√
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√
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√
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DPA
κ2

+
1

4

 (3.25)

where K(|αp|2) and ∆DPA(|αp|2) still depend on pump power and thus implicitly on G0.
Instead of proceeding to eliminate this implicit dependence, for simplicity we consider

the case for small negative Kerr and K(|αp|2) ≈ K(0) = K and ∆DPA ≈ ∆DPA(0) = ωp/2−
ωa. For positive pump detuning ωp > 2ωa, Eq. 3.25 admits one solution for G < G0 and
no solutions for G > G0. However for negative detuning, two solutions are possible for
G > G0 and one for G < G0: a phenomenon observed and termed shark fin shape in
JPCs [Liu et al. 2017] and later in SPAs [Sivak et al. 2019].

For the purposes of improving gain compression, we simplify to the case ωp = 2ωa,
where

Pin =
κ

6|K|
× h̄ωaκ

G5/4

√√√√1

2

(
1−

√
G

G0

)
(3.26)

may be used to guide our circuit optimization. We see that increasing P−1dB requires re-
ducing the Kerr-to-dissipation ratio |K|/κ.

Returning to the second cause of gain compression, pump depletion arises from the break-
down of the stiff-pump approximation [Kamal, Marblestone, and Devoret 2009; Roy and
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Devoret 2018]. The intrinsic nonlinear coupling required for amplification necessarily cou-
ples the source supplying the pump amplitude αp to the signal amplitude αs (c. f. Eq. 3.4).
Thus, increasing αs changes αp and consequently the denominator of Eq. 3.21. Assuming
g4 = 0 and considering the derivative of gain with respect to |αp|2, we can estimate the
compression power due to pump depletion as

P
pump dep
−1dB ∼ κ

g23/ωa

1

G
3/2
0

h̄ωaκ. (3.27)

Since this compression mechanism originates directly from the third-order nonlinearity
needed for amplification, it is intrinsically unavoidable. Note that, in principle, the limit
on fluctuations of |αp|2 is lower-bounded by quantum fluctuations of the mode supplying
the pump; in practice, the semiclassical approximation is often sufficient.

Given these limits on dynamics range, we examine Eqs. 3.26 and 3.27 to formulate a
recipe for higher compression powers: decrease nonlinearities g3 and K, and increase the
dissipation κ. Intuitively, this recipe pushes the optimization closer to system that obeys
the assumptions underlying Eq. 3.9 for the gain of a DPA, namely a more linear oscillator.

Following this recipe requires more applied pump power to reach the desired gain.
However, we must be mindful that the current through the SNAIL does not approach the
critical current of its Josephson junctions. In practice, applying pump currents that ap-
proach the critical current does not directly cause gain compression, but instead determines
whether the amplifier achieves the desired small-signal gain in the first place. To quanti-
tatively understand this limit, we consider the number of pump photons |αp|2 required to
reach the parametric instability or G → ∞ when ωp = 2ωa

n∞ =

(
κ

8g3

)2

=
9

4

(
κ

ωa

c2
pc3

)2
(

M

pφzpf

)2

(3.28)

where in the second line we have wri en g3 with Eq. 2.45. Recalling that the critical cur-
rent limits maximum number of allowed photons in the resonator ncrit ≈ 15(M/pφzpf)

2

Eq. 2.48, we require n∞ < ncrit implying

1 <
20

3

(
pQ

c3
c2

)2

(3.29)

where Q = ωa/κ is the quality factory, c2 and c3 are the Taylor coefficients of the SNAIL
potential Eq. 2.5, and the prefactor depends on the precise definition of ncrit. As such, this
limitation translates to the pQ ≳ 1 constraint in JPAs [Eichler et al. 2014] and JPCs [Abdo,
Kamal, and Devoret 2013]. All amplifiers presented here have pQ > 15 to ensure that the
amplifier produced 20 dB of small-signal gain.
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a b

Figure 3.6 | (a) Measured 1-dB compression powerP−1dB as a function of applied magnetic
flux Φ for four devices biased at G = 20dB gain. (b) Comparison between measured value
and first-principles theory, which semiclassically treats pump depletion and Stark shifts to
second order in harmonic balance.

We followed the recipe of reducing nonlinearities and increasing dissipation to design
our devices (see Table3.2) and compared their 1-dB compression powers in Fig. 3.6a as a
function of applied fluxΦ. For each point, we measured the resonant frequency ωa, applied
a pump at ωp = 2ωa and adjusted the power to getG = 20dB. We then measured the P−1dB

input-referred gain compression power as in Fig. 3.4b. Fig. 3.6b shows the correlations be-
tween our first-principles theory prediction of saturation power with the measured P−1dB,
where the black line indicates agreement between theory and experiment. This theory self-
consistently solves the semiclassical Langevin equations of motion to obtain αs and αi for
given input pump and signal powers and the gain calculated from there (see Appendix A
and [Fra ini et al. 2018]). We find that, for our devices, the Stark shift mechanism of gain
compression closely approximates the full numerical solutions. In fact, the analytical for-
mula Eq. 3.25 reproduces well the compression power of later devices even for appreciable
pump detunings [Sivak et al. 2019].

To confirm the dependence of P−1dB on K, we focus on device B, which has the largest
|g4|/2π ∈ [6, 530]kHz for different flux bias points. This change in g4 and thus K results in
a systematic 15 dB change in P−1dB and the theory predicts the trend. Note the sca er in
the data of Fig. 3.6 results from ripples in the impedance of the transmission line seen by
the SPA, which affects its linewidth κ. The compression power is highly sensitive to this
parameter ∝ κ2 as visible in Eqs. 3.26 and 3.27. In these devices, these ripples predom-
inately originated from the relatively long cable between the sample and the directional
coupler used to separate input from output signals. Improvements in device packaging
have since enabled shortening the cable and mounting the SPA directly onto a circulator,
which drastically reduces this sca er [Sivak et al. 2019].

For device C, we engineered κ/2π ∈ [90, 120]MHz and |g4|/2π ≈ 4kHz except near
its Kerr-free region (see Fig. 3.5b). These changes in κ and K directly result in device
C’s increased perfomance compared to device B. Devices D and E are similar to device
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C but with increasing κ/2π to [180, 250]MHz and [270, 400]MHz respectively, and again
show improved performance. Specifically, the best device, device E, achieves P−1dB ∈
[−112, −102]dBm, which is on par with the best known quantum-limited resonant para-
metric amplifiers [Mutus et al. 2014; Eichler et al. 2014; Roy et al. 2015]. We stress that
this performance, achieved with a dynamic bandwidth of 30–40 MHz, is consisted over the
entire tunable bandwidth⁷ of 1 GHz.

Despite this increase in dynamic range, Fig. 3.6b shows that theory predicted that we
should have achieved higher saturation powers at certain applied magnetic fluxes. The flux
bias points where theory overpredicts P−1dB are those where K is suppressed as suggested
by Eq. 3.26. Specifically, device C in Fig. 3.5b shows a tenfold reduction in measured |K|
at around Φ/Φ0 = 0.4. However, the measured P−1dB did not increase at this flux bias
point. Devices D and E show similar Kerr-free regions, but also do not show increased
P−1dB.

This puzzle may be resolved by noting that the P−1dB prediction Eq. 3.26 requires that
Kerr K(|αp|2) be evaluated at the pump power used to reach 20 dB gain; however, the
Kerr extracted from Stark shift measurements in Fig. 3.5b corresponds to the low-power
asymptote K = K(0). In fact, we can see from the Stark shift measurements in Fig. 3.5a
that the local slope of the Stark shift with respect to drive power is no longer flat at the high
powers needed for amplification.

Intermodulation distortion

With this intuition in mind, we turn to a third-order intermodulation distortion (IMD) mea-
surements [Pozar 2012] to extract K(|αp|2) while the amplifier is biased at 20 dB gain with
the pump on. The standard nomenclature of third-order IMD originates from the fact that
four-wave mixing generates third-order terms in the equations of motion. As we will show,
this measurement also probes the response of the amplifier to multitone or broadband in-
put signals. Understanding the response to such input signals is particularly important
for employing quantum-limited amplifiers in any multiplexed readout scheme of super-
conducting qubits. In such an application, spurious intermodulation products will directly
limit the isolation between readout channels either by directly mixing them or by distorting
pulses. Furthermore, such intermodulation products put an upper bound on the quantum
efficiency of any practical amplifier since, without careful calibration, distortion of the inci-
dent quantum signal is unlikely to be accounted for in the experimentalist’s demodulation
scheme.

A third-order IMD experiment is performed according to the frequency landscape in
Fig. 3.7a. With the pump on and the amplifier biased to G = 20dB, we applied two main
signal tones (solid gray arrows) centered at ωp/2 + 2π × 500kHz with a relative detuning

⁷Tunable bandwidth refers to the frequency range over which the center frequency of the gain profile may
be tuned and G = 20dB still achieved.
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a

b

c

Figure 3.7 | (a) Caricatured (not-to-scale) frequency spectrum in the lab frame for the
measurement of third-order intermodulation distortion (IMD) products of an SPA. The
red shaded region is the Lorenzian lineshape of the linear mode of width κ. Black is the
reflection gain of the amplifier when pumped with a strong microwave tone at ωp ≈ 2ωa.
Solid arrows show two tones applied aboveωp/2with a relative detuning δ. Dashed arrows
indicate output spectrum which is symmetric about ωp/2. (b) IIP3 and P−1dB as a function
of the center frequency (ωp/2) of the 20-dB gain curve for two devices. (c) Magnitude of Kerr
nonlinearity K for device D extracted at high power from IIP3 (dark blue), and extracted
at low power from fits of Stark shift (light blue). Neighboring experimental data points
have been joined to emphasize correlations between the two experiments.

δ/2π = 100 kHz, and measured the power in the resulting sidebands (short dashed gray ar-
rows). Intuitively, two signal photons from one input tone and one from the other combine
in a four-wave-mixing process to generate the resulting sideband. Thus, the measured rel-
ative power between the main tones and the sidebands indicates the amount of four-wave
mixing occurring in the device. Note the entire spectrum is also reflected about ωp/2 due to
the three-wave mixing amplification process; each output tone has its own idler frequency
and hence we choose the 500kHz offset and δ to avoid these.

Sweeping the applied power on the two main signal tones, we extracted the input-
referred third-order intercept point IIP3 at which the measured sideband power should
equal the main input signal power. We conform to the usage in standard microwave am-
plifier data sheets to take IIP3 as the metric for third-order IMD. To characterize our am-
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plifiers, in Fig. 3.7b, we compare the IIP3 and P−1dB as a function of the center frequency
of the gain curve for two different devices. Each point corresponds to a point tuned up in
Fig. 3.6. Strikingly, the features in P−1dB, which we recall are caused by ripples in the line
impedance, are exactly reproduced in IIP3. Such a comparison indicates that the cause of
IIP3, which is four-wave mixing, is most likely responsible for the saturation of the ampli-
fier. This confirms the assertion that Kerr is responsible for the saturation of state-of-the-art
amplifiers [Liu et al. 2017; Fra ini et al. 2018; Planat et al. 2019].

Quantitatively, by considered the response to two input signals, second-order harmonic
balance theory predicts that the measured IIP3 is related to the Kerr nonlinearity K by the
equation

IIP3 =
κ

|2K|

(
1

1 +
√
G

)3

h̄ωaκ, (3.30)

which can then be used to extractK(|αp|2) from IIP3. In Fig.3.7c, we compare the extracted
K(|αp|2) from IIP3 toK(0) extracted from Stark shift measurements and see the noticeable
absence of any suppression of K(|αp|2), indicating that appreciable four-wave mixing is
still occurring when the amplifier is in operation.

Is it possible to suppress Kerr in the presence of the amplification pump? Indeed, such
a suppression can be achieved in SPAs [Sivak et al. 2019]. To understand how, consider the
shape of the frequency shift versus drive photons in the Stark shift measurements Fig. 3.5a.
There exist fluxes Φ at which d∆Ωa/dn̄ = 0 for large n̄. Additionally, the number of pump
photons needed for formally infinite gain

n∞ =
∆2

DPA + κ2/4

4g23
(3.31)

is experimentally tunable in situ by controlling the pump frequency. These two insights
enabled the tuneup of an SPA at a pumped Kerr-free point as confirmed by IMD measure-
ments, and resulted in a ≈ 10dB improvement in saturation power to P−1dB = −102dBm
[Sivak et al. 2019].

3.4 Design optimization principles

Based on the developed understanding from the SPA, in this section we summarize the
optimization principles for quantum-noise-limited reflection amplifiers. The design pro-
cedure is as follows:

1. Choose inductive nonlinearity: SNAILs give access to three-wave mixing and a
pumped Kerr-free point for increased dynamic range. Kinetic inductive materials
are also a good option for reduced Kerr nonlinearity [Parker et al. 2021].

2. Make all inductance nonlinear: design a mode centered at or achieving a Kerr-free
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point at the desired operating frequency ωa while ensuring that the inductive partic-
ipation ratio p ≈ 1.

3. Choose signal port impedance: given the mode impedance, the port impedance on
resonance sets the quality factor Q in a single-mode amplifier. Choose the smallest Q
such that pQ ≳ 1.

4. Reduce Kerr nonlinearity: for improved dynamic range, reduce the Kerr nonlin-
earity by increasing the critical current and/or increasing the number of junctions as
outlined in Sec. 2.3. Ensure after this step that p ≈ 1.

5. Signal port matching network: given a desired port impedance seen at ωa, match the
pumped nonlinearity to this impedance and increase bandwidth by adding stages
to the matching filter [Mutus et al. 2014; Roy et al. 2015], which follow from tech-
niques for broadband reflection amplifiers [Getsinger 1963; Ma haei, Young, and
Jones 1980]. Ensure the signal matching network is sufficiently isolating at 2ωa to
prevent the amplification pump from leaking out the signal input-output port.

6. Pump port matching network: match the pump port to efficiently deliver current
across the SNAILs at 2ωa, while simultaneously preventing in-band signal leakage
that otherwise would limit noise performance.

7. Ensure input line is cold: quantum-limited noise performance requires cold quan-
tum noise incident at the idler frequency as well as no a enuation between the signal
source and the amplifier.

Using these design optimization principles for a SNAIL-based amplifier, we can ideally
achieve a three-wave-mixing reflection amplifier with quantum-limited noise performance,
high gain, power handling on the order of P−1dB ≈ −100dBm, and bandwidth beyond the
gain-bandwidth product. Power handling of kinetic-inductive-based resonant parametric
amplifiers surpasses those based on Josephson junctions at the cost of more applied pump
power [Parker et al. 2021]. The largest outstanding design requirement from Sec. 3.1 is
unidirectionality, but all the above optimizations readily apply to multiparametric schemes
for nonreciprocal device [Abdo et al. 2013a; Sliwa et al. 2015; Lecocq et al. 2017; Lecocq
et al. 2021], including those for increased bandwidth [Naaman et al. 2019].

Before concluding this chapter on amplifiers, we first compare the result of the above
outlined optimization for resonant reflection parametric amplifiers to travelling wave para-
metric amplifiers (TWPAs), which have received a ention recently for the promise of wide-
band, directional amplification. Josephson-junction-based TWPAs have similar compres-
sion powers to the SPAs presented here [Macklin et al. 2015]. SNAIL or RF-SQUID based
TWPAs may also increase compression powers via a similar Kerr-free point [Zorin 2016;
Zorin et al. 2017], while kinetic-inductance-based TWPAs surpass them in this metric [Vis-
sers et al. 2016]. The total number of junctions is similar to the most recent SPAs [Sivak et al.
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2020] and JPAs [Winkel et al. 2020]. As outlined by a recent review of TWPA progress [Es-
posito et al. 2021], phase matching [O’Brien et al. 2014] is a difficult technical requirement,
even when DC-SQUIDs are flux-tuned in situ to minimize ripple [Planat et al. 2020]. More-
over, TWPAs thus far require isolators between the system of interest and the amplifier;
and the same level of quantum-noise-limited performance as resonant amplifiers has yet
to be achieved in qubit readout. We must ask whether reflection-based parametric ampli-
fiers with increased bandwidth via impedance engineering techniques may be more robust
to design and construction tolerances than phase matching in TWPAs.



4
The Kerr-cat qubit
In quantum information processing, quantum error correction (QEC) generally promises
to enable the storage and manipulation of quantum information on timescales much longer
than the coherence times of the individual faulty parts [Go esman 2009; Nielsen and Chuang
2010; Devoret and Schoelkopf 2013; Terhal 2015]. The QEC tactic uses larger system size
and thus more Hilbert space to choose a clever encoding where the logical information is
hidden from the environment, yet still controlled by the experimentalist’s protocol. Most
noisy environments are only locally correlated and thus cannot decohere quantum in-
formation encoded in a non-local manner. Therefore, quantum information can be pro-
tected through the use spatial distance in topological proposals [Kitaev 2003; Oreg, Re-
fael, and Oppen 2010; Lutchyn, Sau, and Das Sarma 2010], or entangled qubit states [Shor
1995; Fowler et al. 2012]. Crucially, this concept can be extended to the non-local states
in the phase space of a single oscillator [Go esman, Kitaev, and Preskill 2001; Mirrahimi
et al. 2014], with the additional benefit of involving fewer physical components, a prop-
erty termed hardware efficiency. Hardware efficiency is desirable because fully protecting
quantum information against all forms of decoherence to the level necessary for useful
algorithms is likely to involve several layers of encoding. Thus, it is crucial to introduce ef-
ficient error protection into the physical layer while maintaining simplicity [Guillaud and
Mirrahimi 2019; Vuillot et al. 2019; Puri et al. 2020].

Within a single oscillator, there exists many encoding options, so-called bosonic codes [Al-
bert et al. 2018], including Schrödinger cat codes [Mirrahimi et al. 2014], binomial codes
[Michael et al. 2016], and GKP codes [Go esman, Kitaev, and Preskill 2001] to name a few.
In this thesis, we focus on the two-legged Schrödinger cat code, based on superpositions
of distinct coherent states—the so-called Schrödinger cat states. While not correcting all
errors to the level needed in an eventual logical qubit in a quantum algorithm, this code
takes the first step: exponentially suppressing one error generator rate¹ (for concreteness, the
phase-flip rate), while suffering a linear increase in the other (bit-flip rate), which generates
an effective so-called noise-biased qubit.

In this chapter, we focus on the autonomous² stabilization of such a noise-biased two-
legged cat qubit based on the interplay between Kerr nonlinearity and single-mode squeez-
ing [Cochrane, Milburn, and Munro 1999; Puri, Boutin, and Blais 2017], which we realized
experimentally and named the Kerr-cat qubit [Grimm et al. 2020]. As we will see, this sys-
tem corresponds directly to the parametric amplifiers discussed in Chapter 3, except now
driven above the parametric instability threshold with a different purpose in mind: to im-

¹For an introduction in the decomposition of environmental noise into strengths of single-qubit errors and
an enumeration of all possible single-qubit error channels, see [Nielsen and Chuang 2010].

²Autonomous here meaning no classical feedforward required: for example, no actions of the room-
temperature measurement and control system that depend on measurement results as is common in QEC
as canonically discussed.

67
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plement a noise-biased qubit. The Kerr-cat qubit builds directly off of, and can indeed
be combined with, the stabilization of two-legged cat qubits based on two-photon dissi-
pation³ [Leghtas et al. 2013; Mirrahimi et al. 2014], which have also been experimentally
realized [Leghtas et al. 2015; Touzard et al. 2018] and recently achieved exponential noise
suppression [Lescanne et al. 2020]. We theoretically treat both of these paradigms on the
same footing at the level of a single oscillator, and save discussions on implementations
with SNAILs and experimental results for Chapter 5.

4.1 Two-legged Schrödinger cat code

The Schrödinger cat code is based on the intuition that coherent states are classically stable
states in oscillators so we should make a quantum error correction code out of them. Ex-
plicitly coherent states are eigenstates of the annihilation operator a |α⟩ = α |α⟩ and for this
reason superpositions of coherent states were suggested as a code that protects against am-
plitude damping [Cochrane, Milburn, and Munro 1999]. Since amplitude damping error
may be approximated by the jump operator √κ1a corresponding to single-photon loss, co-
herent states are also the eigenstates dominant jump operator, which in turn leads to their
stability in the long time limit. We may further understand coherent states as a translation
of the vacuum

|α⟩ = D(α) |0⟩

= e−|α|2/2
∞∑
n=0

αn

√
n!

|n⟩ (4.1)

D(α) = eαa
†−α∗a (4.2)

where D(α) is the displacement operator and |n⟩ are Fock states with property a†a |n⟩ =
n |n⟩. Each coherent state has is Poisson-distributed in photon number with an average
number of photons n̄ = ⟨α|a†a |α⟩ = |α|2 and a variance ⟨α| (a†a − n̄)2 |α⟩ = n̄ [Haroche
and Raimond 2006].

One coherent state is not sufficient for storing quantum information; to form a qubit,
we will need at least one more coherent state |β⟩. The overlap between two coherent states
is
〈
α | β

〉
= e−

1
2
|α|2− 1

2
|β|2+α∗β which when squared |

〈
α | β

〉
|2 = e−|α−β|2 can be wri en

succinctly in terms of the distance between the two coherent states in phase space. Impor-
tantly, this overlap scales exponentially with the distance between the states. For coherent
states that are far apart, we hope (and will show formally later for certain errors) that errors
that a empt to take one coherent state to the other will be suppressed with this exponential.

However, larger coherent states implies on average more photons in the oscillator and

³An engineered jump operator of the form √
κ2a

2, which promises to annihilate two photons at a time but
never only one.
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many loss mechanisms scale poorly with photon number. For instance, losing a single
photon is n̄ times more likely for an oscillator with n̄ average photons (although note that
the energy decay rate to vacuum is κ regardless of the state) [Haroche and Raimond 2006].
We may recognize this linear increase in error probability as the cost associated with per-
forming QEC utilizing a larger Hilbert space. In a standard multi-qubit repetition code, the
equivalent cost is the overhead associated with adding more qubits, which scales polyno-
mially with the number of qubits. Crucially, each qubit also adds error channels whereas,
in the bosonic case, the number of error channels is the same but we have linearly increased
their weight⁴. Hence, this cat code may be hardware efficient if we indeed achieve the same
exponential error correcting power as the repetition code.

Given the above, we want a maximal distance between coherent states for a given n̄ so
we choose the states |±α⟩, which both have the same average number of photons n̄ = |α|2.
However since 〈

+α | − α
〉
= e−2|α|2 ̸= 0, (4.3)

the states |±α⟩ are not orthogonal (only approximately orthogonal) and we need orthogo-
nal states to define our Bloch sphere. These states are superpositions of |±α⟩, the so-called
Schrödinger cat states, defined:

|±Z⟩ =
∣∣∣C±

α

〉
= N±

α

(
|+α⟩ ± |−α⟩

)
= N±

α e−|α|2/2
∞∑
n=0

(
1± (−1)n

) αn

√
n!

|n⟩ (4.4)

N±
α = 1/

√
2(1± e−2|α|2) (4.5)

which are orthogonal
〈
C+
α | C−

α

〉
= 0 with the appropriately chosen normalization coeffi-

cients. By inspection, we notice that
∣∣C±

α

〉
only have weight on even (odd) Fock states |n⟩

and thus are often referred to as even (odd) Schrödingercat states.
We define the Z eigenstates of our Bloch sphere: Z |±Z⟩ = ± |±Z⟩ as depicted in

Fig. 4.1a. This is sufficient to define our Pauli operators with standard conventions but
for clarity we explicitly write the expressions for Pauli states:

|±X⟩ = 1√
2

(∣∣∣C+
α

〉
±
∣∣∣C−

α

〉)
→ |±α⟩ (4.6)

|±Y ⟩ = 1√
2

(∣∣∣C+
α

〉
± i
∣∣∣C−

α

〉)
→ 1√

2

(
|+α⟩ ∓ i |−α⟩

)
(4.7)

|±Z⟩ =
∣∣∣C±

α

〉
→ 1√

2

(
|+α⟩ ± |−α⟩

)
(4.8)

⁴Note however that to reach the same total Hilbert space dimensions as q qubits, we need 2q Fock
states [Nielsen and Chuang 2010].
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a b

Figure 4.1 | (a) Bloch sphere definition for a two-legged Schrödinger cat qubit spanned by
two opposite-phase coherent states |±α⟩. We define the Z eigenstates |±Z⟩ =

∣∣C±
α

〉
, which

define the |±X⟩ and |±Y ⟩ states with standard Pauli matrix conventions (see Eq. 4.6–4.8).
The Wigner function of each cardinal state shows its wavefunction in the larger oscillator
Hilbert space. (b) Taking the limitα → 0maps directly to the Fock qubit—the single photon
Fock state encoding of an oscillator.

where the limit is taken for moderately large |α|.
The corresponding Pauli operators

X =
∣∣∣C+

α

〉〈
C−
α

∣∣∣+ ∣∣∣C−
α

〉〈
C+
α

∣∣∣ (4.9)

Y = −i
∣∣∣C+

α

〉〈
C−
α

∣∣∣+ i
∣∣∣C−

α

〉〈
C+
α

∣∣∣ (4.10)

Z =
∣∣∣C+

α

〉〈
C+
α

∣∣∣− ∣∣∣C−
α

〉〈
C−
α

∣∣∣ (4.11)

conform to the standard 2×2matrix definition of Pauli operators within the qubit subspace
C. We can additionally define the projector to this cat subspace as

PC =
∣∣∣C+

α

〉〈
C+
α

∣∣∣+ ∣∣∣C−
α

〉〈
C−
α

∣∣∣ (4.12)

which obeys the standard projector identity PCPC = PC .
It is also useful to define the ratio of the normalization coefficients

r =
N+

α

N−
α

=

√
1− e−2|α|2√
1 + e−2|α|2

→ 1− e−2|α|2 (4.13)

solidifying the previous limits as formally the approximation r ≈ 1, which becomes expo-
nentially accurate and thus reasonable for even a handful of photons |α|2.

With this convenient notation, we see that the action of a causes a bit flip

a |±Z⟩ = a
∣∣∣C±

α

〉
= αr±1

∣∣∣C∓
α

〉
= αr±1 |∓Z⟩ (4.14)
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Table 4.1 | OperatorsO in the harmonic oscillatorHilbert space projected onto the cat qubit
subspace PCOPC showing their action within the cat subspace. Expressions are shown in
various limits: the Fock qubit (α → 0), arbitrary cat size (α), and large cat size with correc-
tions O(|α|ke−4|α|2) where k = 1, 1, 2 for each row respectively. The ratio of normalization
coefficients r is defined in Eq. 4.13.

O α → 0 α Large α

a 1
2(X + iY ) α

(
r+r−1

2

)
X − iα

(
r−r−1

2

)
Y αX + iαe−2|α|2Y

a† 1
2(X − iY ) α∗

(
r+r−1

2

)
X + iα∗

(
r−r−1

2

)
Y α∗X − iα∗e−2|α|2Y

a†a 1
2(I −Z) |α|2

(
r2+r−2

2

)
I + |α|2

(
r2−r−2

2

)
Z |α|2I − 2|α|2e−2|α|2Z

with this Bloch sphere definition. In contrast, the action of a2 leaves the qubit information
unchanged

a2
∣∣∣C±

α

〉
= α2

∣∣∣C±
α

〉
. (4.15)

Using this fact, we notice that
[
a2,O

]
= 0 for allO ∈ {X,Y ,Z,PC}which we will leverage

for the stabilization of the qubit Bloch sphere throughout the rest of this chapter.
As depicted in Fig. 4.1b, the cat qubit Bloch sphere has a direct mapping, through the

limit α → 0, back to the |n = 0⟩ and |n = 1⟩ Fock-state encoding, which we will refer to as
the Fock qubit (FQ). The Fock qubit is the bosonic qubit encoding with the smallest possible
average photon number of 0.5 photons and corresponds directly to the ground and excited
state encoding of a single transmon qubit⁵ [Koch et al. 2007]. As such, it is the benchmark
encoding to which we often compare our experiments as limit in which no bosonic QEC
was performed.

To gain intuition about what common oscillator operators do to within our qubit Bloch
sphere, we examine the projections of a few operators in the oscillator Hilbert space onto the
cat subspace C listed in Table 4.1. In the appreciableα limit, actions of eithera ora† will only
apply X with all other Pauli operators being exponentially suppressed. Similarly, action
of a†a induces mostly the identity operation with only an exponentially low weight of Z.
This mapping of the photon number operator a†a may also be understood by considering
average photon numbers of the even and odd cat states

n̄± =
〈
C±
α

∣∣∣a†a
∣∣∣C±

α

〉
= r±2|α|2 (4.16)

whose difference n̄+ − n̄− = (r2 − r−2)|α|2 → −4|α|2e−2|α|2 is exponentially small in the
large |α| limit.

These operators also enumerate the operators through which the environment couples
to cause the dominant loss mechanisms in an oscillator: namely single-photon loss (a),
single-photon gain (a†), and pure dephasing (a†a). As we see from Table 4.1, the structure

⁵At least when a transmon may be approximated as a weakly anharmonic oscillator.
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of the cat code exponentially suppresses environmental couplings to both Y and Z, yet
enhances couplings to X . So, if we manage to implement a QEC protocol to stabilize the
cat qubit subspace, then we have a noise-based qubit: phase flips errors (caused by the
environment’s application of either Y or Z) are exponentially suppressed, while bit flips
(application of X) remain.

Before examining in detail the implementation of such a QEC protocol, we pause here
to comment on Bloch sphere definitions. In this thesis, we conform to the Bloch sphere
conventions as described in this section and Fig. 4.1 in which |±X⟩ ≈ |±α⟩ and |±Z⟩ =∣∣C±

α

〉
. As we saw, this basis choice conveniently maps to the Fock qubit and leaves pure

dephasing or phase flips of an oscillator (via a†a) to cause phase flips on the encoded cat
qubit (via Z). Similarly, this leads to a noise-biased qubit with suppressed phase-flips and
increased bit-flips: the equivalent of a phase-flip repetition code [Shor 1995]. However,
in some contexts and references, the conventions are inverted via a Hadamard transform
to implement a bit-flip repetition code. Explicitly, this definition gives |±X⟩ =

∣∣C±
α

〉
and

|±Z⟩ ≈ |±α⟩ with a mapping of Pauli operators

X → Z (4.17)

Y → −Y (4.18)

Z → X (4.19)

in all of previous expressions. Such Hadamard-rotated conventions are particularly con-
venient when considering higher levels of encoding with multiple cat qubits [Guillaud and
Mirrahimi 2019; Puri et al. 2020], for instance in a surface code [Bonilla Ataides et al. 2021;
Darmawan et al. 2021; Singh et al. 2021]. Given two such conventions, we will a empt to
use the language of coherent states versus cat states where possible to delineate the different
Bloch sphere axes; however, all mathematical expressions with Pauli operators and Bloch
sphere axes use the convention |±Z⟩ =

∣∣C±
α

〉
.

4.2 The need for stabilization

As described in the previous section, in order to take advantage of the structure of the cat
code, we must implement a QEC protocol to stabilize the cat qubit Bloch sphere so that
our error properties are determined by the mapping of oscillator operators in Table 4.1. In
an undriven harmonic oscillator, dissipation will tend to push the states outside the cat
qubit Bloch sphere causing a leakage error. For instance, given an oscillator with frequency
ωa and single-photon loss rate κ1, if we prepare the initial state |α⟩, the state after time t

will deterministically evolve to
∣∣α(t)〉 = ∣∣∣αe−iωat−κ1t/2

〉
. Despite the presence of loss, the

quantum state remains pure since state at all points of the evolution is an eigenstate of
the jump operator √κ1a. The deterministic evolution results from the near-identity Kraus
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operator governing the density matrix evolution, or the no-jump evolution [Haroche and
Raimond 2006].

This no-jump evolution must be corrected or the coherent states will inevitably decay
to vacuum |0⟩. At the very least, additional energy must be supplied. In bosonic codes im-
plemented with superconducting circuits thus far, this no jump evolution has either been
ignored [Ofek et al. 2016], corrected by periodically applied unitary evolutions conditioned
on prior measurement results [Hu et al. 2019; Campagne-Ibarcq et al. 2020], or corrected
autonomously via Hamiltonian engineering [Grimm et al. 2020] or engineered dissipa-
tion [Leghtas et al. 2015; Touzard et al. 2018; Lescanne et al. 2020; Gertler et al. 2021]. In
multi-qubit stabilizer codes based on transmon qubits like the repetition code [Kelly et al.
2015; Chen et al. 2021] or the surface code [Andersen et al. 2020], the equivalent no-jump
evolution is correctable by incorporating dynamical decoupling [Viola, Knill, and Lloyd
1999] into the stabilizer measurement circuits that a empts to symmetrize the noise chan-
nels into only depolarizing noise and leakage errors. Ultimately, for QEC to succeed, the
protocol must correct for the no-jump evolution, not just the jumps, and ensure that it acts
as the identity within the code space without causing leakage.

In this thesis, we focus on autonomous stabilization of the two-legged cat code. As
illustrated above, the no-jump evolution predominantly causes leakage errors, the common
case for undriven bosonic code implementations. We further take the continuous limit of
autonomous stabilization to engineer a Hamiltonian and dissipation that continuously and
autonomously prevents and corrects leakage errors by resupplying energy to the system
and evacuating entropy from the system in a way that is completely agnostic to the qubit
state.

4.3 Stabilizing 1 coherent state

Before we tackle the stabilization of the entire cat qubit Bloch sphere, we first answer the
question: how do you stabilize a single coherent state in an oscillator? The answer is rather
straight forward: apply a linear single-photon drive. Although simple, treating this case
explicitly will lead to intuition when we move on to stabilizing the entire cat qubit Bloch
sphere. Additionally, we aggressively invoke the rotating wave approximation (RWA) to
simplify the discussion and the analytical form of the equations. However, as we men-
tioned when treating the SPA in Chapter 3, the RWA is often not valid in three-wave-mixing
applications and a myriad of methods may be employed to make more controllable approx-
imations [Venkatraman et al. 2021].

Consider a harmonic oscillator with frequency ωa that is driven coherently with a linear
single-photon drive at frequency ωp and drive strength ϵ1. In the frame rotating at ωp to
make the drive term time independent, we have the Hamiltonian

H1/h̄ = −∆a†a+ ϵ1a
† + ϵ∗1a (4.20)
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where ∆ = ωp − ωa. We expect such a linear drive to displace the oscillator, so we make a
displacement transformation by α0:

H′
1/h̄ = D†(α0)H1D(α0)/h̄

= −∆a†a+ (−∆α0 + ϵ1)a
† + H.c. (4.21)

where H.c. stands for Hermitian conjugate of the second term. We then solve forα0 = ϵ1/∆

to cancel the second term, leaving us with a Hamiltonian in the displaced frame that is just
the original harmonic oscillator. The ground state of the undriven harmonic oscillator is
the vacuum or 0-photon Fock state |0⟩ and so the ground state of our original Hamiltonian
(4.20) is D(α0) |0⟩ = |α0⟩ or a coherent state as promised. The excited states are the higher
n-photon Fock states |n⟩, so similarly for Eq. 4.20 the higher excited states are displaced
Fock states D(α0) |n⟩.

The above was a full quantum treatment for a detuned drive in the limit of no dissipa-
tion. Physically however, we know that driving an oscillator on resonance ∆ → 0 does not
inject infinite energy, so we need dissipation to regulate the drive. To include dissipation,
we often use the quantum Langevin equation (as in Ch. 3):

ȧ =
i

h̄
[H1,a]−

κ1
2
a+

√
κ1ain (4.22)

= i(∆ + iκ1/2)a− iϵ1 +
√
κ1ain (4.23)

where we have already subsumed the drive into the Hamiltonian so that ain is only the
standard delta-time-correlated Gaussian quantum fluctuations with zero mean. Solving
for the steady state average amplitude α0 = ⟨a⟩, we find α0 = ϵ1/

(
∆+ iκ1/2

)
which

agrees with are previous result in the limit κ1 → 0.
In the context of storing and manipulating quantum information, we would often like

to work in the regime of small yet nonzero dissipation and separate how the dissipation
alters the quantum states from how it may cause errors in a chosen encoding. Moreover, we
hope to perform quantum gates much faster than the error rates so we will not be interested
only in the steady states. In this vain, it can be helpful both for intuition and computation
to cast the QLE above into the form

ȧ =
i

h̄

[
H1ca− aH†

1c

]
+
√
κ1ain (4.24)

H1c = −∆̃a†a+ ϵ1a
† + ϵ∗1a (4.25)

∆̃ = ∆+ iκ1/2 (4.26)

allowing us to identify H1c as a non-Hermitian Hamiltonian with complex eigenvalues,
where importantly the quantum noise to satisfy all commutation relations is maintained
by ain. In the language of master equations, H1c generates the no-jump evolution.
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To see why this is useful, we may start from the Langevin equations, do a displacement
transformation by α0, and extract the Hamiltonian in the displaced frame

H′
1c = −∆̃a†a+

(
−∆̃α0 + ϵ1

)
a† + H.c. (4.27)

where again ∆̃ is the complex detuning from Eq. 4.26. We again solve for α0 = ϵ1/∆̃ to
cancel the last term, which is the same answer as from the QLE. After substitution, we are
left with a Hamiltonian of a harmonic oscillator with complex frequency ∆̃ whose eigen-
states are again |n⟩ in this displaced frame, thus D(α0) |n⟩ in the original frame. Note,
the sign of ∆ determines whether |0⟩ (and thus also |α0⟩) is the highest or lowest energy
state; however, the term “ground state” is justified insofar as dissipation (here photon loss)
leaves the system in |0⟩ (|α0⟩ in the original frame) in the long-time limit.

Non-HermitianHamiltonians are a valuable tool for analyzing the eigenstates and eigenen-
ergies of the no-jump evolution. They do not however contain the stochastic evolution
from the jump part of the master equation, nor equivalently the noise supplied by ain in
the QLE. Coherent states though are eigenstates of the jump operator a, and so the single-
photon jumps do not affect them. We may also consider the action of single photon loss on
the excited states

aD(α0) |n⟩ = D(α0) (a+ α0) |n⟩

=
√
nD(α0) |n− 1⟩+ α0D(α0) |n⟩ (4.28)

where we notice that repeated application of a would bring the system to D(α0) |0⟩. This
justifies the name “ground state” for this state as steady state solution even though it is
either the highest or lowest energy eigenstate of H1c (Eq. 4.25) depending on the sign of
∆.

A similar analysis may be performed for other jump operators and their matrix elements
between the eigenstates of the complex Hamiltonian. For instance, consider the action of
the single-photon gain operator a† on a displaced n-photon Fock state

a†D(α0) |n⟩ = D(α0)
(
a† + α∗

0

)
|n⟩

=
√
n+ 1D(α0) |n+ 1⟩+ α∗

0D(α0) |n⟩ (4.29)

We again see that a† acting on a displaced Fock, like a, leaves a superposition of displaced
Fock states with the same displacement amplitude α0. Also similarly, the action of pure
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dephasing a†a on a displaced n-photon Fock state

a†aD(α0) |n⟩ = D(α0)
(
a† + α∗

0

)
(a+ α0) |n⟩

= α0

√
n+ 1D(α0) |n+ 1⟩

+
(
|α|2 + n

)
D(α0) |n⟩

+ α∗
0

√
nD(α0) |n− 1⟩ (4.30)

also leaves a superposition of displaced Fock states with the same displacement amplitude.
As we will see, this has consequences for the success of QEC. The Wigner functions of these
error states remain relatively close to the original state D(α0) |n⟩, where closeness will be
defined relative to other phase space location that we also wish to stabilize to form our
Schrödinger cat qubit.

4.4 Stabilizing 2 coherent states: the Kerr cat

Seeking the stabilization of the entire cat Bloch sphere to make a nonlocal encoding, we
wish to extend our stabilization protocol to make both |±α⟩ ground states. Importantly,
we also want to stabilize the manifold of their superpositions so as to stabilize the entire
Bloch sphere of Section 4.1 spanned by the cat states

∣∣C±
α

〉
. As noted in Eq. 4.15, these

cat states are eigenstates of a2. Given we know how to stabilize one coherent state with
Eq. 4.25, we can try making the substitution a → a2 to get

H2c = −K̃a†2a2 + ϵ2a
†2 + ϵ∗2a

2 (4.31)

K̃ = K + iκ2/2 (4.32)

where ϵ2 is the squeezing strength or two-photon drive that we will generate through three-
wave mixing as we did in the SPA Chapter 3, K is the self-Kerr nonlinearity defined to be
half of the transmon anharmonicity⁶, and κ2 is a two-photon engineered dissipation rate
generated by a jump operator √κ2a

2.
To see that the cat states

∣∣C±
α

〉
are indeed eigenstates of Eq. 4.31, it is helpful to factor

as

H2c = −K̃
[
a†2 − ϵ∗2/K̃

] [
a2 − ϵ2/K̃

]
+ |ϵ2|2/K̃

= −K̃
[
a†2 − α∗2K̃∗/K̃

] [
a2 − α2

]
+ |ϵ2|2/K̃ (4.33)

where in the second line we have suggestively made the substitution α =
√
ϵ2/K̃. With

this substitution and the eigenvalue equation a2
∣∣C±

α

〉
= α2

∣∣C±
α

〉
, it is easy to see that

∣∣C±
α

〉
⁶As in Eq. 2.53 but with a sign convention change since we focus here to negative anharmonicity and

further math is convenient with K > 0.
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are degenerate eigenstates. Therefore, all superpositions of
∣∣C±

α

〉
are also degenerate eigen-

states, which is precisely the cat qubit Bloch sphere we want to stabilize.
To get a feeling for the rest of the eigenstates and whether

∣∣C±
α

〉
are stable solutions in

the long time limit, we use the displacement transformation by α0 as we did previously to
generate the Hamiltonian in the displaced frame:

H′
2c =

[
−2K̃α2

0α
∗
0 + 2ϵ2α

∗
0

]
a† + H.c.

+
(
−K̃α2

0 + ϵ2

)
a†2 + H.c.

− 4K̃|α0|2a†a− K̃a†2a2

− 2K̃α0a
†2a+ H.c.. (4.34)

To find α0, we must solve to null the linear displacement term. There are three solutions:

α0 = 0, and α0 = ±α with α =
√

ϵ2/K̃. These respectively correspond to a saddle point
and two stable points in phase space of a classical oscillator with Hamiltonian Eq. 4.31.

Dealing with each solution in turn, we expect the α0 = 0 solution to be unstable in the
long-time limit. Classically, looking a flow in phase space, we indeed find that α0 = 0

is not an a ractor and that dissipation (both one- and two-photon) tends to take the sys-
tem toward the other solutions α0 = ±α [Dykman et al. 1998; Zorin and Makhlin 2011;
Wustmann and Shumeiko 2013]. Quantum mechanically, numerically diagonalizing the
Hamiltonian finds the eigenstates. As we will see in the next section, evaluating the matrix
elements of a between eigenstates, we notice that repeatedly applying a leaves the system
in a mixture of the states

∣∣C±
α

〉
. Thus,

∣∣C±
α

〉
are the degenerate ground states, which have

maximum (minimum) energy depending on the sign of K. Eigenstates with weight near the
origin of phase space are excited states and are not stationary under repeated application
of a. As such, both quantum mechanically and classically, the α0 = 0 solution will not be
that interesting for us.

Next, we examine the Hamiltonian in the frame displaced by α0 = ±α:

H′
2c

∣∣∣
α0=±α

= −4K̃|α|2a†a− K̃a†2a2 ∓ 2K̃αa†2a+ H.c. (4.35)

which looks like a Kerr nonlinear oscillator with an extra cubic distortion term or photon-
number-dependent displacement. In the large α limit, this last term will give no correction
at first order perturbation theory and will cause a second order correction to the self-Kerr
term in this displaced frame. As such, we can view our phase space as now containing two
identical anharmonic oscillators, each centered at ±α respectively. We give the frequency
of these oscillators a name

ω̃gap = ωgap − iκgap/2 = −4K̃|α|2

= −4K|α|2 − i2κ2|α|2 (4.36)
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whose real partωgap and imaginary part κgap/2will play an important role in the mitigation
of error processes. Eigenstates of these oscillators are Fock states, which are D(±α) |n⟩ in
the original frame of equation 4.31. We expect then, in the large α limit, for the eigenspec-
trum to split into pairs of degenerate levels until the energy of those levels reaches near
the top of the barrier in phase space, which leaves ∼ |α|2/4 pairs of degenerate levels. We
confirm this conclusion numerically in the following section.

Furthermore, we can already see here the protection against leakage errors that we get
from this stabilization. The frequency of each oscillator is ωgap = −4K|α|2, which signifies
the detuning of a drive from ωa needed to cause a transition to a higher excited state. This is
the same sort of protection that a transmon qubit (which can be approximated as an anhar-
monic oscillator) has against leakage errors to the f -state during gates: the anharmonicity
prevents it. In the Kerr-cat qubit, the small oscillation frequency ωgap around each of the
individual wells at±α plays the role of anharmonicity in the transmon: it is the energy sep-
aration from the unwanted Hilbert space. Additionally, the associated dissipation in these
displaced oscillators is half the imaginary part of the frequency κgap = 4κ2|α|2. As such,
any error mechanism that manages despite the anharmonicity to cause a small displace-
ment in phase space away from our code states |±α⟩ will decay back to |±α⟩ exponentially
with amplitude decay rate 2κ2|α|2 [Mirrahimi et al. 2014; Puri et al. 2019; Lescanne et al.
2019].

4.5 The quantum solution

To confirm our analytical calculations in the previous section and gain intuition about the
phase-space structure of our stabilization Hamiltonian, we specify in this section the purely
dispersive Kerr-cat Hamiltonian

H2c|K̃=K = −Ka†2a2 + ϵ2a
†2 + ϵ∗2a

2

= −K
(
a†2 − α∗2

)(
a2 − α2

)
+ |ϵ2|2/K̃ (4.37)

corresponding to Eq. 4.31with κ2 = 0 implying K̃ = K. In order to visualize the structure
of this Hamiltonian in phase space, we plot in Fig. 4.2a the energy as a function of classical
phase space coordinates by performing the substitution a, a† → a, a∗ in Eq. 4.37. Such
a substitution is justified given our Hamiltonian is normal-ordered. We notice that con-
stant energy contours through phase space form a double-well structure with a separatrix
passing through the origin that divides the classical closed orbits into two categories: those
closed around one extremum ±α, or those closed around all three extrema 0, ±α. We nu-
merically diagonalize Eq. 4.37 in the photon number basis and find the ground states are
indeed the even and odd Schrödinger cat states [Puri, Boutin, and Blais 2017]. We mark the
± superpositions of the cat states (or |±X⟩ states) by the green (orange) markers respec-
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a b

Figure 4.2 | (a),(b) Energy dependence of Hamiltonian Eq. 4.37 as a function of classical
phase space coordinates a, a† → a, a∗ for purely Hamiltonian Kerr-cat qubit with n̄ =
2.75 and a transmon-based Fock qubit (ϵ2 = 0) respectively. Top panels contain contours
of constant energy (solid black) with full energy dependence in color. Black dashed line
indicates the line cut plo ed in bo om panels. Green (orange) markers indicate quadrature
expectation values of |±X⟩, as well as their degenerate eigenenergies in the bo om panel
(dashed gray line). Solid gray lines indicate eigenenergies of the first few excited states.

tively. The location of these markers denotes the pair of quadrature expectation values of
operators (a+a†)/2 and (a−a†)/2i, which indeed are located at the extremum ±α respec-
tively. These two states |±X⟩ ≈ |±α⟩ are separated in phase space by an energy barrier,
and yet are also eigenstates.

Standard quantum mechanical intuition might lead us to believe that the local states
|±X⟩ ≈ |±α⟩ acquire a finite energy spli ing due to quantum tunnelling to the opposite
well; however, this is strictly incorrect. As we already saw,

∣∣C±
α

〉
and thus |±α⟩ are exactly

degenerate eigenstates of Eq. 4.37. The breakdown of this intuition comes from a symmetry
of the Hamiltonian that forbids this tunnel spli ing for the ground states; the symmetry
namely is that the Hamiltonian may be wri en strictly as a function of a2 and a†2, and
therefore there is no quadratic-in-momentum term in the kinetic energy. A Hamiltonian
term of the form a†a breaks this symmetry and results in an exponentially small tunnel
spli ing as we will explore in the following sections (see also Table 4.1). Adding dissipa-
tion (in either single- or two-photon form) opens the closed orbits to trajectories that spiral
toward the steady-state a ractors at ±α, as analytically predicted via semiclassical meth-
ods [Dykman et al. 1998; Wustmann and Shumeiko 2013; Zorin and Makhlin 2011] or even
via fully quantum mechanical steady state solutions [Bartolo et al. 2016; Roberts and Clerk
2020].

In Fig. 4.2b, we compare to the case where ϵ2 = 0 corresponding to an undriven
Kerr-nonlinear oscillator, whose lowest two eigenstates implement the Fock qubit. In this
case, there is no energy barrier between the states |±X⟩ = (|0⟩ + |1⟩)/

√
2. The Hamilto-

nian has actually increased its symmetry—a discrete two-fold rotational symmetry is now
continuous—and therefore these states are also exactly degenerate. In the Fock qubit case,
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Figure 4.3 | (a) Eigenstate energy (relative to the degenerate ground states’ energies) de-
pendence of Hamiltonian Eq. 4.37 on the average number of photons n̄ = |α|2 = |ϵ2/K|.
Black dashed line denotes n̄ = 5 used in (b). (b) Left two columns: Wigner functions of
the first 8 eigenstates separated by their even or odd photon-number-parity eigenvalue.
Right two columns: the ± superstitions of the even and odd parity eigenstates that become
degenerate at large n̄. The top row, from left to right, are the |−Z⟩, |+Z⟩, |−X⟩, and |+X⟩
states of the cat qubit Bloch sphere.

there is no drive present to privilege a frame, so this degeneracy is a direct consequence of
working in the frame rotating at ωa. The difference then between the Kerr-cat qubit and
the Fock qubit is not so much the existence of the eigenstate degeneracy, but the robustness
of that degeneracy to perturbations (again, see Table 4.1).

To further understand the robustness of the Kerr-cat Hamiltonian, we turn to the struc-
ture of the excited states of Eq. 4.37. In Fig. 4.3a, we plot the numerically calculated
eigenenergies (relative to the degenerate ground state energies) as function of n̄ = |α|2 =

|ϵ2/K|. Again, at ϵ2 = 0, we see the expected spectrum of a Kerr-nonlinear resonator with
anharmonicity 2K. As n̄ increases, the eigenspectrum begins to show additional degen-
eracies. Specifically, at the black dashed line n̄ = 5, the second and third excited states—
mapping back to |n = 2⟩ and |n = 3⟩ respectively when ϵ2 = 0—pair up and becomes de-
generate⁷. Such a pairing of the eigenspectrum is signature of period-doubling phenom-
ena [Dykman et al. 2018] and justifies the use of phase diagrams to delineate the different
regimes [Dykman et al. 1998; Wustmann and Shumeiko 2013] as we will pursue shortly.

Before this, consider the Wigner functions of the lowest eight eigenstates plo ed in
Fig. 4.3b for n̄ = 5. The first row denotes the cat-qubit Bloch sphere with degenerate
ground states

∣∣C±
α

〉
as well as their symmetric and antisymmetric superpositions |±X⟩ ≈

|±α⟩, which are clearly localized to ±α respectively. The next two excited states are al-
ready sufficiently degenerate so that their symmetric and antisymmetric superpositions

⁷Degenerate here means sufficiently close in energy to be considered degenerate in experiment—or de-
generate to within the linewidth induced by dissipation.
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may also be considered eigenstates. We see in Fig. 4.3b that these states are also well lo-
calized to ±α and look approximately like D(±α) |n = 1⟩. In energy, they also live below
the top of the energy barrier, although less so than the ground states. The next two excited
states—numbers 4 and 5—are energetically above the energy barrier, outside the classical
separatrix. As such, they are not yet degenerate, implying their symmetric and antisym-
metric superpositions are not eigenstates. If an environmental fluctuation were to drive a
transition from say one of the lower local symmetric states to these eigenstates, the previous
locality would be washed away at rate of order the energy spli ing. To counteract these
leakage-inducing transitions, the addition of two-photon [Puri et al. 2019] and colored-
single-photon [Pu erman et al. 2021] dissipation have been suggested. Heuristically, as
long as dissipation keeps the quantum state in the ≈ |α|2/4 pairs of degenerate levels be-
low the energy barrier, the induced cat-qubit phase-flip rate will be exponentially small
because the state will remain local. Finally, higher and higher excited states should again
converge to those of an undriven anharmonic oscillator, before that resembling squeezed
Fock states centered at the origin.

4.6 Including detuning and single-photon loss

The previous two sections gave a model for the stabilization of a Kerr-cat qubit in the ideal
case. However, experimentally applied drives will never be perfectly on resonance and
single-photon loss will never be truly absent. This section will add these terms back to the
model and show that the entire cat Bloch sphere may be stabilized and protected even in
their presence. The treatment will result in conditions on the magnitude of the detuning
and single-photon loss to remain in the protected cat regime. We also saw when discussing
SPAs in Chapter 3 that two-photon drives give rise to squeezing and amplification, thus far
absent in this chapter. Including both of these effects requires introducing a phase diagram,
previously developed [Dykman et al. 1998; Wustmann and Shumeiko 2013] and semiclas-
sically adapted to SPAs specifically in Appendix A [Sivak et al. 2019].

Let us begin with the general non-Hermitian Hamiltonian in the frame rotating to make
the two-photon drive static (so half of the squeezing drive frequency ωp in a three-wave
mixing implementation)

HKC = −∆̃a†a− K̃a†2a2 + ϵ2a
†2 + ϵ∗2a

2 (4.38)

where as before

∆̃ = ∆+ iκ1/2 (4.39)

K̃ = K + iκ2/2 (4.40)

are the complex detuning and complex Kerr nonlinearities respectively. Going into the
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displaced frame with test amplitude α0,

H′
KC =

[
−2K̃α2

0α
∗
0 + 2ϵ2α

∗
0 − ∆̃α0

]
a† + H.c.

+
(
−K̃α2

0 + ϵ2

)
a†2 + H.c.

+
(
−4K̃|α0|2 − ∆̃

)
a†a− K̃a†2a2

− 2K̃α0a
†2a+ H.c. (4.41)

is the transformed Hamiltonian. To null the linear displacement terms, we solve the poly-
nomial equation

2K̃α2
0α

∗
0 = 2ϵ2α

∗
0 − ∆̃α0 (4.42)

We can see immediately that α0 = 0 is a solution and then we are free to divide by 2K̃α0

and rearrange to solve for the remaining solutions:

ϵ2

K̃

α∗
0

α0
= |α0|2 +

∆̃

2K̃
(4.43)

This rearrangement is convenient for solving the magnitude |α0| first and then the phase
later. Multiplying both sides by their complex conjugates, we have

∣∣∣∣ ϵ2K̃
∣∣∣∣2 = |α0|4 + 2Re

{
∆̃

2K̃

}
|α0|2 +

∣∣∣∣∣ ∆̃2K̃
∣∣∣∣∣
2

(4.44)

which is a quadratic equation for |α0|2 with solutions

|α0|2 = −Re

{
∆̃

2K̃

}
±

√√√√√∣∣∣∣ ϵ2K̃
∣∣∣∣2 −

Im

{
∆̃

2K̃

}2

(4.45)

=
1

2|K̃|2

(
−∆K +

κ1κ2
4

)
±

√√√√∣∣∣∣ ϵ2K̃
∣∣∣∣2 −

(
Kκ1 −∆κ2

4|K̃|2

)2

(4.46)

where this expression gives all possible solutions (stable and unstable) as long as we require
the discriminant ≥ 0 and |α0|2 ≥ 0.

We will examine these regimes in the next section, but first for completeness we want
to solve for the phase ϕ0 as well. Parameterizing as α0 = |α0|e−iϕ0 , we choose to take the
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imaginary part of Eq. 4.43 which leaves

Im
{
ϵ2

K̃
e+i2ϕ0

}
= Im

{
∆̃

2K̃

}
(4.47)

sin
(
2ϕ0 − arg

(
ϵ2/K̃

))
=

Kκ1 −∆κ2

4|ϵ2||K̃|
(4.48)

Importantly, there are always 2 valid phases ϕ0 within one drive period—a defining feature
of period doubling. Defining ϕ̃0 = ϕ0 − arg(ϵ2/K̃)/2, the equation for the valid phases
reduces to

sin (2ϕ̃0) =
Kκ1 −∆κ2

4|ϵ2||K̃|
(4.49)

where it is clear there exist π-periodic solutions for φ̃0, which implies two coherent states
that are always 180 degrees out of phase or symmetric about the origin of phase space. This
180 degrees out of phase is a robust consequence of period doubling; if solutions |α0| ̸= 0

are stable, there will always be two that are 180 degrees out of phase.

4.7 Multi-stability regions

The goal of this section is to find the regions of parameter space where the five possible
solutions of Eq. 4.42 are actually stable solutions. Our five possible solutions are: α0 = 0,
and two-oppositely phased solutions for each the+ and− solution in Eq.4.45. As depicted
in Figure 4.4, we will find three regions in parameter space that will host one, two, or three
stable solutions ofα0 respectively. To delineate these regions, we will use the conditions on
the solutions to Eq.4.45 that |α0| ≥ 0 and that |α0| ∈ R, which translates to the discriminant
from the quadratic formula being positive.

For clarity, we briefly summarize what these conditions enforce are the stable solutions
before explicitly deriving the boundaries.

1. Region I: Only α0 = 0 is stable and so this is the trivial solution corresponding to a
single stable point.

2. Region II: Two states with opposite phases are stable, both with amplitudes given
by the + solution of Eq. 4.45. This is the desired regime for Schrödinger cat state
stabilization.

3. Region III: This tri-stable regime has three steady states with α0 = 0 and |α0| given
by the − solution of Eq. 4.45.

These regions in parameter space are plo ed for three different regimes of κ2 and K in
Figure 4.4, from the purely dispersive Kerr-cat regime where κ2 = 0 on the left to the
driven-dissipative case where κ2 ≫ K on the right.
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Figure 4.4 | Stability diagrams for |K̃| = 10κ1 with (a) κ2 = 0, (b) K = |K̃|/2 and (c)
K = |K̃|/100, which span from a pure Kerr cat to a purely driven-dissipative stabilization.
There exist three distinct regions in parameter space delineated by the number of stable
solutions to equation (4.43). Region I (white), II (blue), and III (green) have one, two, or
three stable solutions respectively. For cat qubits, we intentionally bias deep inside region
II where quantum information is well-protected in the form of the two-legged Schrödinger
cat code defined in Sec. 4.1.

Now we explicitly derive the boundaries between these regions. In order for anyα0 ̸= 0

solutions to exist, we require |α0| ∈ R or

∣∣∣∣ ϵ2K̃
∣∣∣∣2 ≥

Im

{
∆̃

2K̃

}2

=⇒ |ϵ2|2 ≥
(Kκ1 −∆κ2)

2

16|K̃|2
(4.50)

Saturating this constraint to equality defines the parabolic boundary between regions I and
III, which fla ens into a horizontal line in the limit κ2 → 0. Interestingly, for κ2 ̸= 0, we can
find a ∆ = Kκ1/κ2 at which applying vanishing two-photon drive (ϵ2 → 0) still satisfies
this condition and results in tri-stability, as can be seen by region III touching the horizontal
axis in Fig. 4.4b–4.4c.

In order for the − solution to exist, along with the condition Eq. 4.50, we require |α0| ≥
0 by first insisting

−Re
{
∆̃/2K̃

}
≥ 0

=⇒ K∆ ≤ κ1κ2/4 (4.51)

whose boundary is independent of ϵ2 and thus a vertical line delineating region I from
region III as evident in Figure 4.4b. Note that the sign of K, in the plots assumed to be
positive to conform the usual case of negative anharmonicity, will determine the direction
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of the inequality. In general, flipping the sign of K will invert the ∆ axis.
Finally, for existence of the + solution, we require condition Eq. 4.50 and enforce |α| ≥

0 by requiring

∣∣∣∣ ϵ2K̃
∣∣∣∣2 −

Im

{
∆̃

2K̃

}2

≥

Re

{
∆̃

2K̃

}2

=⇒
∣∣∣∣ ϵ2K̃
∣∣∣∣2 ≥

∣∣∣∣∣ ∆̃2K̃
∣∣∣∣∣
2

=⇒ |ϵ2|2 ≥
∆2 + κ21/4

4
(4.52)

which importantly is completely independent of K̃.
Given the three conditions Eqs. 4.50, 4.51, 4.52 and excluding saddle points of the

Hamiltonian Eq. 4.38 as unstable, we delineate parameter space into the three regions with
one, two, and three stable solutions for α0 as promised⁸. Cuts of this parameter space are
plo ed on the |ϵ2|2 and ∆ plane in Fig. 4.4. Note, for a two-photon drive that results from
a three-wave-mixing process, |ϵ2|2 is proportional to the drive power, and ∆ = ωp/2 − ωa

is the detuning of half the pump frequency ωp from resonance. For all three cuts, we use
the condition |K̃| = 10κ1 and vary the phase of K̃ or equivalently the ratio of κ2 to K.

Starting with Fig. 4.4a, we have the purely dispersive Kerr-cat regime where κ2 = 0

and therefore K̃ = K. There exists a single triple point at ∆ = 0 and |ϵ2|2 = κ21/16 at
which all three solution regimes coexist. This triple point also coincides with the mini-
mum of the parabola from condition Eq. 4.52. As such, increasing |ϵ2|2 beyond the thresh-
old (∆2 + κ21/4)/4, which precisely corresponds to the parametric instability in parametric
amplifiers (see Eq. 3.21), the oscillator enters the bi-stable regime of region II that we dis-
cuss in detail in the next section. For the remaining boundary between regions I and III,
condition Eq. 4.50 reduces to a horizontal line which requires |ϵ2| ≥ κ1/4 in order to have
any solutions with |α0| ̸= 0.

Moving to Fig. 4.4b, Kerr and two-photon dissipation contribute equally with K =

|K̃|/2. The boundary to enter region II is unchanged compared to the previously purely dis-
persive case because condition Eq. 4.52 is independent of K̃. However, condition Eq. 4.50
is now a parabola with a minimum at ∆/κ1 = K/κ2. Instead of intersecting the region II
boundary at one location, there are now two intersections resulting in two separate triple
points. In general, as κ2/K is increased these two triple points separate staying constrained
to the boundary of region II.

Increasing κ2 so that K = |K̃|/100 leads to Fig. 4.4c where the two triple points have
moved outside the plo ed window. Region III now nearly completely encases region II

⁸Proving stability requires examining a ractors in phase space [Dykman et al. 1998; Zorin and Makhlin
2011; Wustmann and Shumeiko 2013], or solving the steady state exactly [Bartolo et al. 2016; Roberts and Clerk
2020].
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such that moving from region I to region II requires passage through region III. Specifi-
cally, in the limit K → 0, the intersection between regions I and III is defined by condition
Eq. 4.50 as |ϵ2|2 ≥ ∆2/4, which mimics condition Eq. 4.52 without the offset by κ21/16.

Before continuing, we should also note a few comments about Stark shifts. So far,
Hamiltonian Eq. (4.38) has been wri en in the frame that makes the two-photon-drive
resonant (so ωp/2 for three-wave mixing) and the Kerr term has been normal-ordered. Ex-
perimentally, there will always be a Stark-shift (or more generally a renormalization) of the
oscillator frequency due to the application of the drive. This can be included in the above
discussion by making the substitution ∆ → ∆+ f(|ϵ2|2) since the oscillator frequency now
depends on the drive power, for example see Eq. 3.18. For the standard AC Stark shift,
f(|ϵ2|2) ∝ |ϵ2|2 which will warp the regions of stability in Fig. 4.4 by bending them to the
left [Wustmann and Shumeiko 2013; Sivak et al. 2019]. The foremost qualitative feature
added by considering the AC Stark shift is the existence of a critical detuning (> 0 for
K > 0 as plo ed) above which increasing the drive power will no longer bring the system
into region II, but instead remains in the trivial region I. In parametric amplifiers, this qual-
itative feature explains the inability to tune up large gain for large blue-detuned squeezing
drives, as derived by Eq. 3.25.

Now that we understand how the stable solutions for α0 depend on experimental pa-
rameters, we can ask what quantum fluctuations will do in the full quantum-mechanical
problem. In general, fluctuations will smear the boundaries between the different regions
as well as couple states localized at each of the stable α0 solutions. However, as long as the
stable α0 solutions are far apart in phase space, coherent states centered at each α0 (and/or
their superpositions) will be a good basis for describing dynamics. Moreover, in this limit
the density matrix of the oscillator in the long time limit will be a mixture of these coherent
states which is precisely why they are the classically steady states to begin with.

4.8 Robustness of the bi-stable regime: home for cats

Having understood the boundaries in parameter space between different regions of stabil-
ity, we focus now on the home for the Schrödinger cat code outlined at the beginning of
this chapter in Sec. 4.1: region II. In this region it is useful to rewrite the solutions for α0 in

terms of deviations from the solutions ±
√
ϵ2/K̃. To this end, we rewrite the + solution of

Eq. 4.45 for the magnitude and the phase Eq. 4.49 as

|α0|2 =
∣∣∣∣ ϵ2K̃
∣∣∣∣
−Re

{
δ̃
}
+

√
1−

(
Im
{
δ̃
})2

 (4.53)

sin (2φ̃0) = Im
{
δ̃
}

(4.54)
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where φ̃0 is the phase referenced to the case ∆̃ = 0 and

δ̃ =
∆̃

2K̃

∣∣∣∣∣K̃ϵ2
∣∣∣∣∣ = ∆̃K̃∗

2|ϵ2||K̃|

=
(∆K + κ1κ2/4)

2|ϵ2||K̃|
+ i

Kκ1 −∆κ2

4|ϵ2||K̃|
(4.55)

is a dimensionless detuning. When δ̃ = 0, the problem reduces to the one from Section 4.4

where the solutions are α0 = ±
√

ϵ2/K̃. The reduced detuning encodes the discrepancy
from this case caused by finite detuning ∆ or single-photon loss κ1. The magnitude

|δ̃| = |∆̃|
2|ϵ2|

=

√
∆2 + κ21/4

2|ϵ2|
(4.56)

also conveniently encapsulates the condition Eq. 4.52 to be inside region II as |δ̃|2 < 1.
To analyze the steady state deep inside region II, we consider the limit |δ̃|2 ≪ 1. We

then Taylor expand

|α0|2 →
∣∣∣∣ ϵ2K̃
∣∣∣∣
[
1− Re

{
δ̃
}
− 1

2

(
Im
{
δ̃
})2

+O(|δ̃|3)

]

=

∣∣∣∣ ϵ2K̃
∣∣∣∣
[
1− ∆K + κ1κ2/4

2|ϵ2||K̃|
− (Kκ1 −∆κ2)

2

32|ϵ2|2|K̃|2
+O(|δ̃|3)

]
(4.57)

to see that the photon number deviates linearly in Re
{
δ̃
}

from the unperturbed solution.

Similarly the phase φ̃0 deviates linearly with Im
{
δ̃
}
/2 in the small angle expansion.

Truncating more aggressively to ignore termsO(|δ̃|2) and combining the amplitude and
phase information, we have

α0 → ±
√

ϵ2

K̃

[
1− δ̃

2
+O(|δ̃|2)

]
(4.58)

which readily lends the interpretation that δ̃/2 is simply an additional displacement. This
reveals a robustness to noise processes that can be wri en in the Hamiltonian form −(∆+

iκ1/2)a
†a—which includes single-photon loss, single-photon gain, low-frequency detun-

ing noise originating from flux charge noise, and some part of pure dephasing noise (see
Appendix B). Such noise processesmay be mapped to small displacements insofar as |δ̃|/2 ≪
|2α|2, meaning they are small compared to the distance between our two stable qubit ground
states. The induced leakage errors are then local in phase space, and jumps associated with
single- or two-photon loss may correct them before they develop into a full logical phase
flip between coherent states.
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4.8.1 Eigenstate perturbations

To inspect the changes detuning and single-photon loss induce on the eigensates, we turn
to the displaced frame Hamiltonian Eq. 4.41

H′
KC =

∆̃

2
e−i2φ0a†2 + H.c.

+
(
−4K̃|α0|2 − ∆̃

)
a†a− K̃a†2a2

− 2K̃α0a
†2a+ H.c. (4.59)

assuming α0 solves Eq. 4.43 under the conditions of region II. We see a slightly squeezed,
anharmonic oscillator with an additional distortion term (last line). Comparing with the
same Hamiltonian se ing ∆̃ = 0 in Eq. (4.35), the only differences are an offset of the
frequency and a two-photon drive both of strength ∆̃. The relative frequency offset is small
insofar as |δ̃|/2 ≪ 1. Looking at this displaced oscillator frequency more carefully, we find

ω̃gap =
(
−4K̃|α0|2 − ∆̃

)
(4.60)

= −4K̃

∣∣∣∣ ϵ2K̃
∣∣∣∣
√1−

(
Im
{
δ̃
})2

− δ̃∗

2

 (4.61)

=
(
−4K|α0|2 −∆

)
− i

(
2κ2|α0|2 +

κ1
2

)
(4.62)

whose real and imaginary parts increase with |α0|2; both the frequency and the amplitude
decay rate back to the |n = 0⟩ state increase with |α0|2 in this displaced frame.

Upon further inspection of the displaced Hamiltonian Eq. 4.59, we might be concerned
that this Hamiltonian mirrors the form of our original Hamiltonian Eq. 4.38 but with an
extra term. Ignoring the extra term first since it annihilates the lowest Fock state |n = 0⟩,
we need to be sure that states around the center of this displaced phase space will be stable
or else we will again have multiple solutions. However, so long as |∆̃| < |ω̃gap|, we should
only have a single stable solution in phase space. The ground state in this case is a squeezed
state, where |∆̃|/|ω̃gap| is a small parameter that sets the amount of squeezing. The axis of
the squeezing in the displaced frame relative to the direction of the opposite solution is
given by the phase of ∆̃. In the case ∆ = 0, the ground state of this displaced oscillator is
slightly elongated in the direction of the opposite stable solution; for nonzero∆ and κ1 = 0,
the elongation of the ground state is orthogonal to the prior case. Although small in magni-
tude, this squeezing is important for the structure of the ground state manifold and also for
evaluating the jump rate between the two stable α0 solutions. While we often use stochas-
tic master equations with phenomenological noise strengths to numerically simulate these
rates, analytical calculations often reduce the dynamics via an instanton approximation
that latches to the most-probable tunnelling path through phase space between the two
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steady state solutions [Marthaler and Dykman 2007]. The phase of ∆̃ heavily influences
this as can be visualized by the squeezing term in the displaced frame Hamiltonian. In
general this path makes an S-shape connecting the two-wells that snaps to a straight line
when ∆ = 0 [Dykman et al. 1998; Marthaler and Dykman 2007; Zorin and Makhlin 2011;
Zhang and Dykman 2017].

Returning to the last term in Eq. 4.59, perturbatively it connects higher level local states,
which are approximately displaced Fock states, across the energy barrier to other such
states centered at the opposite extrema in phase space. We may visualize this effect by
considering the Wigner functions in Fig. 4.3 of the superpositions of higher eigenstates
that are still below the top of the energy barrier; they appear to be leaking toward the
opposite well. As such, the nonlocal encoding of local states necessary for the exponential
suppression of phase flip errors gets polynomially worse for higher excited states. Hence,
dissipation is necessary to cool back down to the ground states and maintain protection.

To summarize this chapter, we introduced the two-legged Schrödinger cat qubit as a
noise-biased qubit defined by the Bloch sphere in Sec. 4.1 and analyzed its coupling to the
environment through low-weight operators a, a†, and a†a summarize by Table 4.1. We
introduced a fully autonomous stabilization and QEC protocol via the Hamiltonian 4.38

that ideally achieves exponential phase-flip suppression with a linear increase in bit-flip
rate [Cochrane, Milburn, and Munro 1999; Mirrahimi et al. 2014; Puri, Boutin, and Blais
2017; Puri et al. 2019]. This corresponds to the implementation of a canonical multi-qubit
phase-flip repetition code, but implemented only with an average of n̄ photons within a
single oscillator. It also simultaneously and autonomously corrects leakage errors. Finally,
we derived a phase diagram in terms of experimental parameters and found three regions
of stability with one, two and three steady states respectively. The bi-stable regime cor-
responds to the safe haven for the Schrödinger cat qubit, and the robustness to noise of
the Hamiltonian form −(∆ + iκ1/2)a

†a comes directly from the long-time stability of the
period-doubling in this bifurcated system.



5
Realization of a Kerr-cat qubit
As we investigated theoretically in the previous chapter, a combination of a single-mode
squeezing drive and Kerr nonlinearity stabilizes a two-legged Schrödinger cat qubit. In
this section, we focus on the experimental realization of such an autonomous stabilization
scheme [Grimm et al. 2020]. We will show an increase in the transverse relaxation time
of more than one order of magnitude compared to the single-photon Fock-state encoding.
Crucially, we also perform a complete set of single-qubit gates on timescales more than
sixty times faster than the shortest coherence time. Finally, we also demonstrate single-shot
readout of the noise-biased qubit in a quantum nondemolition (QND) way while under sta-
bilization. Further extensions of these results will be presented in Chapter 6. Overall, our
results showcase the combination of fast quantum control and robustness against errors,
which is intrinsic to stabilized nonlocal encodings, as well as the potential to be used in
quantum information processing [Puri et al. 2019; Puri et al. 2020; Guillaud and Mirrahimi
2019; Goto 2016b].

Our single-mode bosonic implementation should be directly compared to repetition
codes of transmon qubits [Kelly et al. 2015]. Recent results from Google Quantum AI
harness 21 transmons qubits (not counting the tunable-coupler qubits between them) in
a repetition code to achieve a 100-fold error suppression [Chen et al. 2021]: a feat possible
only with many input-output lines and carefully crafted protocols to periodically extract
leakage [McEwen et al. 2021]. Our results [Grimm et al. 2020] and those based on purely
dissipative cats [Lescanne et al. 2020] achieve similar levels of suppression, with only linear
increase of errors in the orthogonal direction, all while utilizing significantly fewer degrees
of freedom, input-output ports, and room-temperature electronics.

5.1 Single qubit implementation

Our implementation is simple and versatile: a superconducting SNAIL-based transmon
under parametric driving. Unlike other hardware-efficient encodingswith bosonic qubits [Ofek
et al. 2016; Hu et al. 2019; Campagne-Ibarcq et al. 2020], the most nonlinear mode of our
system encodes and stabilizes the qubit without requiring auxiliary nonlinear modes that
often introduce additional uncorrectable errors. As we saw in Chapter 4, the purely disper-
sive Kerr-cat qubit is governed by the Hamiltonian 4.37, which consists of a single-mode
squeezing drive and Kerr nonlinearity that we must now engineer.

For this goal, our experimental implementation consists of a superconducting nonlin-
ear resonator placed inside a 3D microwave cavity (Fig. 5.1a). This is a standard setup
in 3D transmon qubits with a few key modifications. The foremost modification, employ-
ing a SNAIL (see Chapter 2) as the nonlinear inductor, allows us to create single-mode
squeezing through three-wave mixing by applying a strong microwave pump tone at fre-

90
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4 μm2 cm

a cb

Figure 5.1 | (a) Photograph of the nonlinear resonator (purple frame) inside the copper
section of the readout cavity. The second half of the cavity, machined from 6061 Al (not
shown), is aperture-coupled to a section of Al WR-90 waveguide (not shown), which acts
as a high-pass Purcell filter with a cutoff frequency ≈ 8.2GHz and assists in delivering the
strong squeezing pump tone at ωp ≈ 2ωa. (b) Schematic of the nonlinear resonator host-
ing the Schrödinger cat states. The large pads (black) set the nonlinear resonator’s dipole
capacitance to EC/h ≈ 65MHz, and the pad offset δ sets the dispersive coupling to the
readout cavity. Biased with an external magnetic flux Φ, A SNAIL, electron micrograph in
(c), provides the nonlinearity necessary for both the Kerr and the squeezing drive through
three-wave mixing.

quency ωp near twice the resonator frequency ωa. Fabricated this time with a bridge-free
technique [Lecocq et al. 2011] of aluminum on sapphire (see Fig. 5.1c), the SNAIL makes
the resonator flux tunable. Here, we flux-tune the resonant frequency of the device to
ωa/2π = 6GHz by flowing DC-current through a coil mounted beneath the copper sec-
tion of the readout cavity. The SNAIL also supplies four-wave mixing capabilities and
thus the desired Kerr nonlinearity, see Sec. 2.2 and Eq. 2.53. Large capacitor pads, de-
picted in Fig. 5.1b, with dipole charging energy EC/h ≈ 65MHz help reduce the Kerr
nonlinearity to a measured anharmonicity 2K/2π = 13.4MHz. In summary, we have
a low-anharmonicity capacitively-shunted flux qubit [Yan et al. 2016], biased away from
a flux sweetspot at Φ = 0.26Φ0 to maintain appreciable three-wave-mixing nonlinearity
g3/2π ≈ 20MHz that may otherwise be approximated as a Fock qubit (FQ). At this fre-
quency, the Fock qubit has an amplitude damping time T1 = 15.5µs, and a transverse
relaxation time T2 = 3.4µs.

The Fock qubit is employed for initialization and measurement of the Kerr-cat qubit
during most experiments in this work. This is possible because, as discussed in Sec. 4.1
and Fig. 4.1, the states share a common Bloch sphere definition |±Z⟩ =

∣∣C±
α

〉
with the

appropriately chosen values of α for the Kerr-cat qubit and α → 0 for the Fock qubit.
Intuitively, photon number parity is conserved by the Hamiltonian 4.37 regardless of the
value of ϵ2. Consequently, ramping the squeezing drive on and off slowly with respect
to 1/2K adiabatically maps between the Fock qubit and Kerr-cat qubit [Puri, Boutin, and
Blais 2017], an operation we will refer to as mapping.
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5.2 Proof of cat by Rabi oscillations

We now show that we indeed implement the Hamiltonian 4.37, and thus stabilize a Kerr-
cat qubit, by demonstrating the unique features of Rabi oscillations around the X axis of
its Bloch sphere. To this end, we apply an additional coherent drive with amplitude ϵx and
frequency ωp/2 = ωa. Within the RWA, this adds the Hamiltonian term ϵxa

† + ϵ∗xa. We
may project onto the Kerr-cat Bloch sphere using Table 4.1 in the appreciable |α|2 limit

PC

(
ϵxa

† + ϵ∗xa
)
PC ≈ (ϵxα

∗ + ϵ∗xα)X + i(ϵxα
∗ − ϵ∗xα)e

−2|α|2Y (5.1)

where we see Rabi oscillations predominantly around the X axis with the Rabi rate

Ωx = Re
{
4ϵxα

∗} (5.2)

and an exponentially small Rabi rate around the Y axis. Intuitively, the drive lifts the de-
generacy between |±X⟩ ≈ |±α⟩ by linearly tilting the Hamiltonian’s action in phase space,
causing a relative energy difference between the two extrema in Fig. 4.2a. The change how-
ever is only relative; one well moves up in energy and the other down by the same amount.
Thus, all the cat states even/odd |±Z⟩ =

∣∣C±
α

〉
and parityless |±Y ⟩ remain degenerate. This

simple argument already hints at the robustness of the cat-state degeneracy to Hamiltonian
terms of the form a or a†.

Another equivalent picture considers the action of the Hamiltonian in phase space. As-
suming the stabilization drive ϵ2 is strong enough to fix the locations ±α in phase space,
then the action of the drive makes an infinitesimal displacement before it is stabilized back,
a form of Zeno dynamics in the two-photon dissipation case [Touzard et al. 2018]. When
the displacement pushes the fringes of the cat states vertically, then a small phase within the
Bloch sphere is accumulated to which the stabilization is agnostic by construction. When
the displacement pushes the fringes in the orthogonal direction, the cat-state fringes do not
roll and the action is identity within the cat-code space. No ma er the picture though, cat
states become other cat states with different or undefined parity, but the coherent states are
approximately eigenstates of the added drive Hamiltonian and thus are not affected by it.

These pictures are only valid for large enough α and so long as the population stays
within the Kerr-cat Bloch sphere (i.e. no leakage errors). In order for the on-resonance
drive at ωp/2 to cause leakage to higher excited states, the drive strength ϵx would need
to overcome the detuning by ωgap ≈ −4K|α|2 (Eq. 4.36 or reading off Fig. 4.2a). The
adiabaticity condition to prevent leakage then restricts ϵx ≪ ωgap, which in turn restricts
the maximum Rabi rate to

|Ωx| ≪ 4|ωgapα| ≈ 16|Kα|3 (5.3)
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Figure 5.2 | (a) Pulse sequence to perform the following functions: (1) initialize the Kerr-
cat qubit (|0⟩ →

∣∣C+
α

〉
), (2) drive Rabi oscillations for a varying time ∆t, and (3) map onto

the Fock qubit and perform dispersive readout. ωp, ωp/2, and ωb are the frequencies of the
respective drives. Black arrow indicates the endpoint of numerical simulations for (b) and
(d). (b) Dependence of the Rabi frequency Ωx on √

ϵ2 when arg(ϵx) = 0 as calibrated in
(c). Open gray circles are experimental data; black solid line is a one-parameter fit used to
calibrate ϵ2. The red star marker indicates the condition ϵ2/2π == 15.5MHz used for (c)
and (d). (c) Dependence of the experimentally measured Rabi oscillations on time ∆t and
on the phase of the Rabi drive arg(ϵx)with respect to arg(ϵ2)/2, set to 0 for convenience. The
color gives the ground state population of the Fock qubit (P0) at the end of the experiment.
(d) Cuts of (c) for three Rabi-drive phases indicated by dashed lines. Open gray circles are
experimental data and black lines are simulation. Symbols indicate the times at which the
simulated density matrix approximates the cardinal states |+Z⟩, |+Y ⟩, |−Z⟩, and |−Y ⟩ of
the Kerr-cat qubit (increasing time order).
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using Eq. 5.2. Note this is a factor of |α| enhancement of the Rabi rate over the naïve limit
provided by interpreting ωgap as a sort of anharmonicity of the Kerr-cat qubit [Puri, Boutin,
and Blais 2017]. In practice this constraint may be further relaxed considerably with pulse
engineering techniques [Chow et al. 2010; Chen et al. 2016].

Note also that the Rabi rate Eq. 5.2 differs from the Rabi rate of a Fock qubit in two
ways. First, it depends on the amplitude of the squeezing drive through α =

√
ϵ2/K. Sec-

ond, it varies with the phase of the applied Rabi drive phase arg(ϵx) relative to arg(α) =

arg(ϵ2/K)/2. These two features of the Rabi oscillations are important signatures of stabi-
lizing a Kerr-cat qubit.

We first focus on the effect of the squeezing drive on the Rabi frequency. As depicted
by the pulse sequence in Fig. 5.2a, we initialize in |+Z⟩ =

∣∣C+
α

〉
and apply a Rabi drive

constant |ϵx| and correctly calibrated phase arg(ϵx) = arg(α) for a variable time ∆t and a
variable amplitude |ϵ2|, extracted from the oscillation in the measured Fock-qubit |n = 0⟩
state population fraction at the end of the experiment. For ϵ2 = 0, we are simply driving
Fock qubit Rabi oscillations giving a direct calibration of |ϵx|/2π = 740 kHz. For large val-
ues of |ϵ2|, the Rabi frequency becomes a linear function of √ϵ2, confirming the theoretical
prediction of Eq. 5.2. The solid black line shows a one-parameter fit to a numerical mas-
ter equation simulation, which includes single-photon loss at rate κ1 = 1/T1 as the only
dissipation [Grimm et al. 2020].

We now turn to another unique feature of these Rabi oscillations by se ing |ϵ2|/2π =

15.5MHz and varying both ∆t and arg(ϵx). As expected, the measured oscillations shown
in Fig. 5.2c are π-periodic¹ in arg(ϵx). Three cuts through this data (dashed lines) are shown
in Fig. 5.2d. The top panel corresponds to a phase difference of π/2 between the coherent
state amplitude and the Rabi drive, meaning that oscillations are suppressed. The slow
decay in probability follows from the expected influence of single-photon loss on the cat-
states, which we will examine in more detail with coherence measurements in Sec. 5.5. The
middle and bo om panels use the same scaling factor and are thus parameter-free predic-
tions in good agreement with the measured data. Having benchmarked our simulation in
this way, we may use it to compute the full density matrix. We find good agreement with
the four cardinal cat states on the Kerr-cat Bloch sphere at the four marker-indicated time
points, apart from a small distortion due to the finite ramp time of the initial mapping.

5.3 Single qubit gate fidelities

Having benchmarked our system and shown that we indeed control a Kerr-cat qubit, we
pursue a fast set of high-fidelity single qubit gates. The number of gates per coherence
time is an important qubit performance metric and, similar to any physically implemented

¹Eq. 5.2 might imply they should be 2π-periodic, but the experimental protocol involves population mea-
surements of |±Z⟩, making the measured data agnostic to the sign of the Rabi rate Ωx.
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qubit, the effective anharmonicity sets speed limit in absence of other technical consid-
erations. For stabilized cat qubits, this is given by the generalized complex energy gap
ω̃gap = ωgap − iκgap/2 (Eqs. 4.36 and 4.62), where ωgap ≈ −4K|α|2 is the Hamiltonian gap
that prevents leakage and κgap ≈ 4κ2|α|2 + κ1 is the dissipative gap that autonomously
corrects for leakage.

With these limits in mind, we characterize the mapping operation and a complete set
of single-qubit gates on the Kerr-cat qubit by performing process tomography. In the re-
maining experiments of this chapter corresponding to this work [Grimm et al. 2020], the
average photon number of the cat states is set to n̄ = 2.6 and frequency shifts induced by
the squeezing drive are taken into account by se ing ωp/2 to the Stark-shifted resonator
frequency. While we have an analytical formula for this Stark-shift Eq. 3.18, in practice we
choose the squeezing drive frequency that minimizes spurious Z rotations induced by a
Hamiltonian term of the form −∆a†a. As may be seen from Table 4.1, within the cat qubit
Bloch sphere this spurious Rabi rate

Ωz = 4∆|α|2e−2|α|2 (5.4)

is exponentially small with increasing average photon number. Despite this, n̄ = 2.6 in this
experiment was not large enough to ignore this effect, in contrast to the later experiments
we will consider in Chapter 6.

The pulse sequence for tomography of the adiabatic mapping between the Fock qubit
and the Kerr-cat qubit is shown in Fig. 5.3a. The Fock qubit is initialized on each of the six
cardinal points of the Bloch sphere:|±X⟩, |±Y ⟩, and |±Z⟩ respectively. The respective oper-
ation is then performed, in this case just the mapping from Fock qubit to Kerr-cat qubit and
back, and the expectation values ⟨X⟩, ⟨Y ⟩, and ⟨Z⟩ are measured by a combination of Fock
qubit pulses and dispersive readout (gray box). The expectation values are normalized by
the bare Fock qubit Rabi contrast to focus on the gates in the Kerr-cat qubit as opposed to
those on the Fock qubit. We plot the measured state vectors on a Bloch sphere in Fig. 5.3b.
An estimate of the fidelity Fmap ≈ 0.855± 0.002 (± one standard deviation) is obtained by
the Pauli transfer matrix approach [Chow et al. 2012]. This number reflects both the fidelity
of the tomography Fock qubit pulses, which are not short compared to T2 = 3.4µs due to
the speed limit set by the anharmonicity 2K/2π = 13.4MHz, as well as the mapping itself.
As such, apart from normalization by the Fock qubit Rabi contrast, the presented fideli-
ties include state-preparation-and-measurement (SPAM) errors. We expect these errors to
be dominated by decoherence during the comparatively slow adiabatic ramps. This could
be remedied in future experiments by using optimal faster-than-adiabatic pulse shapes,
which can reduce the duration of the mapping by a factor of more than 40 with respect to
its current value of 320ns with the tanh profile used here [Puri, Boutin, and Blais 2017].
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Figure 5.3 | (a), (c), (e), Pulse sequences for process tomography of mapping between Fock
qubit and Kerr-cat qubit, which is ideally the identity operation I (a), mapping andX(π/2)
gate (c), as well as mapping and the Z(π/2) gate (e). In each sequence, the Fock qubit is
initialized on the |±X⟩, |±Y ⟩, and |±Z⟩ cardinal points of the Bloch sphere, the respective
operation is performed, and the expectation values ⟨X⟩, ⟨Y ⟩ and ⟨Z⟩ are measured by
a combination of Fock qubit pulses and dispersive readout (gray box). In (c), TX(π/2) =
24ns is the total duration of the Gaussian Rabi pulse applied to the Kerr-cat qubit. In (e),
TZ(π/2) = 38ns is the duration for which the squeezing drive is abruptly switched off to
perform the gate. (b), (d), (f), Process tomography for the operations respectively. The
expectation-value vector after the operation for initialization in each cardinal point is given
by each marker, where color and shape denote initial state. The fidelities are 0.855± 0.002,
0.857± 0.001, and 0.811± 0.001, respectively.
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5.3.1 Continuous gate between cats

We now turn to the pulse sequence shown in Fig. 5.3c, which additionally performs and
X(π/2) gate on the Kerr-cat qubit². The pulse shape is chosen to be approximately Gaussian
with a standard deviation of 6ns truncated to a total pulse duration of TX(π/2) = 24ns. The
energy gap that sets the speed limit via Eq. 5.3 for these pulses was measured with spec-
troscopy experiments to be ωgap/2π ≈ 50MHz for the presented sample when biased at
n̄ = 2.6 in agreement with numerical diagonalization of the effective Hamiltonian Eq. 4.37.
The pulse amplitude is scaled to realize the desired π/2 rotation angle, but we emphasize
that the amplitude may be chosen to implement an arbitrary angle of rotation X(θ) in di-
rect analogy to microwave-activated gates on Fock qubits³. Different from the Fock qubit
however, only the X(θ) gate may be applied to the Kerr cat qubit via single photon drive,
not Y (θ) nor Z(θ). This is a direct consequence of the protection of our Kerr-cat qubit. Nei-
ther we nor the environment may apply gates ∝ Y or ∝ Z while the stabilization is active,
as was evident in the arg(ϵx) phase dependence of the Rabi oscillations in Fig. 5.2c.

The process tomography data for the X(π/2) gate (Fig. 5.3d) shows the desired ro-
tation around the X-axis with a fidelity FX(π/2) = 0.857 ± 0.001. Comparing this value
to Fmap indicates that FX(π/2) is mostly limited by SPAM errors. In fact, complementary
measurements based on modified randomized benchmarking estimate the infidelity due
to over-rotation and decoherence during the gate operation to be about 0.01, which is ap-
proximately the decoherence limit given the gate time [Grimm et al. 2020].

5.3.2 Discrete gate by free Kerr evolution

As the previous operation is compatible with an arbitrary angle of rotation X(θ), only an
additional π/2 rotation around the Z axis is needed to reach any point on the Kerr-cat
Bloch sphere. Nominally, such a gate is incompatible with the stabilization as it could be
used to go between |+X⟩ ≈ |+α⟩ and |+Y ⟩. Moreover, this gate by construction explicitly
unbiases the qubit noise channel: it maps coherent states to cat states. As such, applications
that hope to leverage this noise bias may only use theZ(π/2) gate as part of the preparation
or measurement portion of a desired algorithm [Puri et al. 2019; Guillaud and Mirrahimi
2019; Puri et al. 2020].

To implement such a Z(π/2) gate, consider the free evolution of a Kerr Hamiltonian

²We use the notational convention that X(θ) corresponds to a unitary rotation by angle θ around the X
axis, such that X(π) is a “π-pulse” give by the unitary X .

³In transmon implementations of Fock qubits, the equivalent speed limit is given by the anharmonicity
2K. The pulse amplitude and phase tune the rotation angle θ and the axis of rotation axis respectively, as can
be seen by the drive Hamiltonian projected onto the Fock qubit Re {ϵx}X − iIm {ϵx}Y (see Table 4.1).
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(ϵ2 = 0) starting from a coherent state

e+iKta†2a2 |+α⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!
e+iKta†2a2 |n⟩

= e−|α|2/2
∞∑
n=0

αn

√
n!
e+iKtn(n−1) |n⟩

∝

 |+α⟩ if t = π/K;

|+iα⟩ − i |−iα⟩ if t = π/2K.
(5.5)

which refocuses⁴ back to |+α⟩ every Kerr revival time π/K [Yurke and Stoler 1988; Kirch-
mair et al. 2013]. At half of the revival time π/2K ≈ 37.3ns, the coherent state refocuses
back to a parityless cat state, which is our |+Y ⟩ state but with an overall π/2 phase shift in
phase space. Thus free Kerr evolution implements the desired gate⁵.

With the squeezing drive on ϵ2 ̸= 0, the stabilization fixes the Kerr-cat Bloch sphere
states in place in phase space. Quickly and diabatically turning the squeezing drive off
(ϵ2 = 0), waiting TZ(π/2) = 38ns ≈ π/2K to perform a controlled amount of free Kerr
evolution, and quickly ramping the squeezing ϵ2 back on with a π phase shift therefore
implements the desired gate. Recall a π phase shift on ϵ2 via the drive at frequency ωp

corresponds to a π/2 shift in the frame of the Kerr-cat qubit at frequency ωp/2. Thus, the
π phase shift of ϵ2 effectively redefines the Bloch sphere from α → iα: specifically, |±Z⟩ =∣∣C±

α

〉
before the gate to |±Z⟩ =

∣∣∣C±
iα

〉
after the gate⁶. Note the symmetry provided by

the period-doubling implies that we made a choice to associate a π phase shift of ϵ2 with
+π/2 phase shift of the code states. The opposite convention is equally valid, implying
α → −iα and consequently from |±Z⟩ =

∣∣C±
α

〉
before, to |∓Z⟩ =

∣∣∣C∓
−iα

〉
after, which,

together with the identity
∣∣∣C∓

−iα

〉
=
∣∣∣C±

iα

〉
, makes it clear that physically the resultant state

is no different, just the Bloch sphere convention and hence the interpretation of the resultant
gate as Z(±π/2) respectively.

Sticking with the convention to implementZ(+π/2), we now measure the performance
of this gate with full process tomography. The data are shown in Fig. 5.3f with an extracted
fidelity of FZ(π/2) = 0.811±0.001. We a ribute the reduction of this fidelity with respect to
Fmap to the difference between the gate time TZ(π/2) and π/2K, and to the finite rise time
of the step function in ϵ2 of about 4 ns; both of which are not limitations of our device but
of our room-temperature electronics.

We have now demonstrated a complete set of single qubit gates on the Kerr cat qubit,
consisting of an X(θ) gate in 24 ns and a Z(π/2) gate in 38 ns. In two-legged Schrödinger

⁴Note n(n− 1) is an even number for all integers n.
⁵Our nonlinear oscillator in principle has both g3 and g4 terms (Eq. 2.40), but for the dynamics near ωa

these may be approximated by free Kerr evolution (c.f. Eq. 2.49).
⁶In practice, the chosen phase of ϵ2 must also account for pump detuning and so the new frame change is

given by π/2 + (ωp/2− ωa)TZ(π/2).



5.4 | Cat-quadrature readout 99

cat qubits autonomously stabilized with two-photon dissipation rate κ2, the equivalent
X(θ) gate has previously been achieved [Touzard et al. 2018]. In such experiments, κgap ≈
4κ2|α|2 + κ1 (see Eq. 4.62) limits the achievable gate speeds based on calculations similar
to those generating Eq. 5.3 [Mirrahimi et al. 2014]. Since two-photon dissipation has thus
far been engineered via auxiliary nonlinear modes, experimental realizations have thus
far been limited to κ2/2π = 0.18MHz [Touzard et al. 2018], which, assuming similar |α|2,
should be compared to |2K|/2π = 13.4MHz in our work [Grimm et al. 2020]. This com-
parison makes evident the advantage of storing the cat-states in the most nonlinear mode,
where the Kerr nonlinearity assists in the stabilization and allows faster gate times in state-
of-the-art implementation. The gate speeds in both stabilization methods, however, benefit
linearly from larger average photon number n̄ = |α|2. The important consideration then
for the comparison of gate time to coherence times is the achievable n̄-dependence of co-
herence times, a discussion we postpone for Sec. 5.5 and later Chapter 6.

5.4 Cat-quadrature readout

Before measuring the coherence times of our Kerr-cat qubit, we wish to further reduce the
experimental dependence on the quality of the Fock qubit. So far, we have characterized
the basic properties and gate operations of the Kerr-cat qubit by mapping back onto the
Fock qubit and using the well-understood dispersive readout [Blais et al. 2004] to extract
information. This readout, however, explicitly turns off the stabilization and any error-
protection we have, which is undesirable. We now demonstrate an entirely new way to
perform a quantum non-demolition (QND) measurement of the X component of the sta-
bilized Kerr-cat qubit, which we call cat-quadrature readout (CQR) [Puri et al. 2019].

As an overview, we apply an additional strong microwave drive at ωcqr = ωb − ωp/2,
which generates a bilinear frequency-converting interaction between the nonlinear res-
onator hosting the Kerr-cat qubit, and the readout cavity at frequency ωb. The stabiliza-
tion provided by the squeezing drive projects this bilinear interaction within the Kerr-cat
qubit subspace to a conditional displacement on the readout cavity whose direction de-
pends on the Kerr-cat qubit state |±X⟩ ≈ |±α⟩. This displaced field then leaks out of the
readout cavity at ωb and the output field is collected and demodulated by a precision mi-
crowave measurement setup including a quantum-limited amplifier to infer the qubit state
|±X⟩ ≈ |±α⟩.

5.4.1 CQR model as conditional displacement

Mathematically now, and in more detail, we derive the above qualitative description of
CQR. Consider the addition of a strong microwave drive tone at frequency ωcqr = ωb −
ωp/2 and assume it couples to the most nonlinear mode a with an amplitude αcqr. The
nonlinearity necessary to generate the frequency conversion process originates from the
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SNAIL mixing element and comes from the Hamiltonian term

g3

(
a+

gba
∆ba

b+ H.c.
)3

→ g3

(
ae−iωpt/2 + αcqre

−iωcqrt +
gba
∆ba

be−iωbt + H.c.
)3

= 6g3
gba
∆ba

(
αcqrab

† + α∗
cqra

†b
)
+Hrotating(t)/h̄

≈ 6g3
gba
∆ba

(
αcqrab

† + α∗
cqra

†b
)

(5.6)

where gba is the bare capacitive coupling rate, ∆ba = ωb −ωa so that the hybridization may
be simply wri en in the dispersive approximation⁷. In the first line, we have transformed
to the displaced and co-rotating frame of Kerr-cat mode a at ωp/2 and readout cavity b at
ωb and invoked the RWA explicitly in the final line but also throughout⁸.

From this, we see that the addition of this strong drive at ωcqr implements an effective
interaction Hamiltonian of the form

Hcqr/h̄ = gcqrab
† + g∗cqra

†b (5.7)

where gcqr = 6g3αcqr(gba/∆ba) within both the dispersive and RWA approximations. This
frequency-converting beamspli er interaction has been generated by three-wave mixing in
other contexts: through flux-pumped RF-SQUIDs [Allman et al. 2014], flux-pumped DC-
SQUIDS [Lecocq et al. 2017], and JRMs [Abdo et al. 2013b; Abdo, Kamal, and Devoret 2013;
Flurin et al. 2015; Sliwa et al. 2015]. Four-wave-mixing implementations have been used
to controllably release quantum states of light [Pfaff et al. 2017], especially for remote en-
tanglement protocols [Axline et al. 2018; Kurpiers et al. 2018; Campagne-Ibarcq et al. 2018;
Burkhart et al. 2021], as well as for gates between harmonic oscillators used as quantum
memories [Gao et al. 2018; Gao et al. 2019] and quantum simulators [Wang et al. 2020].
When implemented without the squeezing drive ϵ2 = 0, this interaction implements a fluo-
rescence readout of the Fock qubit [Campagne-Ibarcq et al. 2016], which we may use in lieu
of dispersive readout as in Chapter 6 or simply to calibrate the interaction strength in the
current discussion to be |gcqr|/2π = 1.7MHz for the chosen drive power.

To see how this frequency converting process acts within the Kerr-cat qubit subspace,

⁷The dispersive approximation is not necessary. The relevant quantity is the undriven cross-cubic nonlin-
earity ∝ c3EJφ

2
a,zpfφb,zpf where the zero-point fluctuations are those for the eigenmodes as seen by the SNAIL

nonlinearity (c. f. Sec. 2.5). For simplicity this term is approximated g3gba/∆ba here.
⁸As before, the RWA is strictly not valid, but a leading order non-RWA treatment simply renormalizes gcqr.
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with with squeezing drive on |ϵ2| ̸= 0 we may project using Table 4.1

PCHcqrPC =
(
gcqrαb

† + g∗cqrα
∗b
)(r + r−1

2

)
X

− i
(
gcqrαb

† − g∗cqrα
∗b
)(r − r−1

2

)
Y (5.8)

≈
(
gcqrαb

† + g∗cqrα
∗b
)
X

+ i
(
gcqrαb

† − g∗cqrα
∗b
)
e−2|α|2Y (5.9)

where r is the ratio of cat state normalization coefficients (Eq. 4.13), and for appreciable
photon number |α|2 the readout cavity b is predominantly coupled to X with an exponen-
tially small coupling to Y . The Hamiltonian Eq. 5.9 implements a displacement of cavity
b conditioned predominantly on X or on which coherent state |±α⟩.

This conditional displacement Hamiltonian is interesting in its own right in the context
of controlling harmonic oscillators with ancillary qubits. Engineering such a Hamiltonian
was central to the recent stabilization of GKP states [Campagne-Ibarcq et al. 2020], although
it that case through an echoed stroboscopic interaction with transmon qubits [Eddins et al.
2018; Touzard et al. 2019]. With a Kerr-cat qubit, such an interaction comes with the added
benefit that the b cavity only couples to the qubit through theX operator, which commutes
with the predominant qubit error—bit-flips in this encoding, which are applications of the
jump operator X . This property is a crucial ingredient for fault-tolerant control and error
syndrome extraction in GKP codes, other bosonic codes, and QEC schemes generally [Puri
et al. 2019].

Returning to the context of CQR considering the oscillator b as a readout cavity, the con-
ditional displacement Hamiltonian Eq. 5.9 for readout in superconducting circuits dates
back to the quantronium [Vion et al. 2002] and is also associated with radiation pressure
coupling in optomechanics [Aspelmeyer, Kippenberg, and Marquardt 2014]. For efficient
readout as with CQR, the interaction must be parametrically modulated [Didier, Bourassa,
and Blais 2015], as was implemented recently in superconducting circuits [Touzard et al.
2019; Ikonen et al. 2019; Dassonneville et al. 2020] and shown to have advantages over
dispersive readout for fast readout pulses. Furthermore, this readout mechanism is com-
patible with using input-squeezed light for increased sensitivity in a way that dispersive
readout is not [Didier, Bourassa, and Blais 2015; Eddins et al. 2018].

To see how this conditional displacement interaction indeed performs readout of |±X⟩ ≈
|±α⟩, consider the dynamics of the readout cavity b described by the QLE in the same ro-
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tating frame and within the RWA

ḃ =
i

h̄

[
Hcqr, b

]
− κb

2
b+

√
κbbin

≈ −igcqrα
(
X + ie−2|α|2Y

)
− κb

2
b+

√
κbbin (5.10)

where κb/2π = 1.9MHz is the total single-photon-loss rate of the readout cavity, and bin is
the standard delta-time-correlated input field with the property ⟨bin⟩ = 0 for this protocol.
Ignoring the exponentially small term, we then solve for the coherent-state amplitude β =

⟨b⟩ in response to turning on the drive at frequency ωcqr at t = 0

β(t,X) =
−i2gcqrα

κb
X
(
1− e−κt/2

)
(5.11)

where we have assumed the qubit started at t = 0 in an eigenstate |±X⟩ denoted via the
eigenvalue X = ±1. The steady state value is therefore |β⟩ with β = ∓i2αgcqr/κb.

As derived [Didier, Bourassa, and Blais 2015] and verified [Touzard et al. 2018], the
voltage signal-to-noise ratio, which is square-root of the usual power-defined SNR,

√
SNR(τ) =

√
32η

|gcqrα|
κb

[
κbτ − 4

(
1− e−κbτ/2

)
+
(
1− e−κbτ

)]1/2
(5.12)

where τ is measurement pulse time and η is the quantum efficiency of the entire measure-
ment, itself defined as the ratio of the measurement rate and the total dephasing rate. This
expression is for the optimal demodulation envelope [Gambe a et al. 2007; Ryan et al. 2015;
Bultink et al. 2018], as derived in [Touzard et al. 2019] for conditional displacement readout.
At long times, the scaling of the

√
SNR(κbτ ≫ 1) ∝ (κbτ)

1/2 matches dispersive readout;
however, at short times

√
SNR(κbτ ≪ 1) ∝ (κbτ)

3/2 outpaces dispersive readout which
itself remains ∝ (κbτ)

1/2. Furthermore, the entire SNR ∝ |α|2 implying that qubit read-
out should improve for larger photon-number cats without any other subsequent changes
to readout power or efficiency. Such SNR scalings lend an advantage to CQR in terms of
optimizing qubit readout for faster and/or higher fidelity measurements.

We may now use the steady state β (Eq. 5.11) to estimate the validity of our projection
into the Kerr-cat qubit manifold in Eq. 5.9. In a mean-field treatment, we take b → β in
Eq. 5.7 resulting in Hamiltonian

Hcqr/h̄
∣∣∣
b→β

≈ g∗cqrβa
† + gcqrβ

∗a

= ∓i2
|gcqr|2

κb
(αa† − α∗a) (5.13)

that implements a single-photon drive on the Kerr-cat qubit. According to Eq. 5.2, the in-
duced Rabi rate from such a drive is identically zero because Re {∓iαα∗} = 0, indicating
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there are no spurious in-manifold rotations during the readout. In a weak measurement
sense, this implies trajectories within the Kerr-cat qubit Bloch sphere will only be stochas-
tically kicked toward ±X with no diffusion in the Y Z plane; this is the same result⁹ as
observed with dispersive readout of transmon qubits under near-unity-efficiency homo-
dyne detection [Murch et al. 2013].

Additionally, the readout process could cause leakage out of the Kerr-cat qubit Bloch
sphere, which in turn would limit both readout fidelity and QNDness. This leakage how-
ever is suppressed so long as |gcqrβ| ≪ ωgap via that same mechanism for suppressed leak-
age in the X(θ) gate in Sec. 5.2. Rewriting this bound with an eye toward the SNR in
Eq. 5.12

SNR ∝ |gcqrα|2 ≪ |ωgapκbα|/2

≈ 2Kκb|α|3, (5.14)

we notice that the SNR may be efficiently increased by |α|2 and the limit imposed by leakage
is simultaneously increased. Given this, the optimization to increase noise bias, gate speed,
and readout SNR all converge toward making cats with larger average photon number. The
remaining important factor is the scaling of coherence, which promises an exponential gain
on one axis with a linear degradation of the other as we will investigate shortly.

5.4.2 CQR experimental verification

We now characterize the fidelity of this readout by first initializing the Kerr-cat qubit along
its X axis and then applying a CQR pulse at ωcqr = ωb − ωp/2 for a time Tcqr = 3.6µs as
shown in Fig. 5.4a. Two histograms of the measured cavity field are shown in the top two
panels of Fig. 5.4b after amplification with a near-quantum-limited measurement chain
and subsequent demodulation with the optimal envelope. The phase of conditional dis-
placement arg(gcqr) = +π/2 is chosen make the signal appear in the in-phase quadrature I
of the demodulation. With this choice, the top (middle) panel corresponds to a positively
(negatively) displaced output field when the qubit was prepared in |±X⟩ ≈ |±α⟩.

The separation is large enough to implement a single-shot readout by se ing a thresh-
old at I/σ = 0 (dashed line), where I/σ is a dimensionless quantity corresponding to the
I-quadrature signal divided by the standard deviation σ of the histograms. This conven-
tion allows the experimental SNR to be visually read to be ≈ 4.3 from the figure with the
definition

SNR =
|I+X − I−X |2

2σ2
(5.15)

where I±X corresponds to the center of the blob ⟨I⟩ for each preparation |±X⟩.

⁹With Hadamard-rotated Bloch sphere convention so that stochastic kicks were toward ±Z.
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a b
Squeezing

Fock qubit
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Cat quad. readout

Figure 5.4 | (a) Pulse sequence for (b). After initialization in |±X⟩ ≈ |±α⟩ (Y (±π/2)
on the Fock qubit and mapping) and minimal wait time ∆t = 24ns, a pulse at frequency
ωcqr = ωb − ωp/2 is applied for Tcqr = 3.6µs converting the quadrature amplitude of the
Kerr-cat qubit to a drive on the readout cavity at ωb. (b) Top and middle: histogram of the
integrated and demodulated cavity output field when performing CQR after preparation
in |±X⟩ ≈ |±α⟩ respectively. Bo om: corresponding probability distribution along the
I quadrature. Open orange (green) circles show measured data for each preparation and
solid lines are Gaussian fits of width σ used to scale the quadrature axes, I and Q. Se ing
threshold at I/σ = 0 (dashed line) implements a direct single-shot readout of the Kerr-cat
qubit along its X-axis.
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We may further quantify the total readout fidelity with the conservative definition

F = 1− p(−X|+X)− p(+X| −X) (5.16)

where p(±X|∓X) is the probability of assigning the readout state ±X differently from the
initialized state |∓X⟩. These probabilities may be directly and experimentally determined
by integrating the probability on the wrong side of the threshold line in Fig. 5.4. With this
method, the readout fidelity for this experiment is F = 0.74. This is a lower bound includ-
ing errors in state preparation caused by thermal population in the Fock qubit |n = 1⟩ state,
which contributes an infidelity of about 8%. Similarly, imperfections during the initial Fock
qubit pulse and mapping both reduce F .

Finally, we characterize the quantum-non-demolition (QND) aspect of the CQR via an
experiment that performs two successive measurements. The QNDness may be quantified
by the metric

Q =
1

2

(
P (+X|+X) + P (−X| −X)

)
(5.17)

whereP (±X|±X) is the probability of obtaining measurement outcome±X in two succes-
sive measurements. The experimentally extracted QNDness for this system was Q = 0.85,
which we improve upon in the experiments to be discussed in Chapter 6.

5.5 Kerr-cat coherences

Given that we have both a complete set of single qubit gates and QND readout of a Kerr-cat
qubit, we proceed to measure the coherences on the different cardinal points of the Bloch
sphere. We begin with the phase-flip rate of the Kerr-cat qubit. Fig. 5.5a depicts the pulse
sequence to measure the decay of the ⟨X⟩ component of the coherence. To prepare the
Kerr-cat qubit in |±X⟩ ≈ |±α⟩, as we did to characterize CQR we start in the Fock-qubit
|n = 0⟩ and perform the rotation Y (±π/2) to prepare |±X⟩ of the Fock qubit. After the
adiabatic mapping sequence, we have prepared |±X⟩ ≈ |±α⟩ of the Kerr-cat qubit. We
then wait a variable amount of time ∆t with the squeezing drive on and then perform CQR
to measure the Kerr-cat qubit state along the X axis.

With this pulse sequence, we measure the decay of the ⟨X⟩ coherence in Fig. 5.5b (blue
data points) for our Kerr-cat qubit with n̄ = 2.6 average photons. We fit the data to a single-
exponential decay with characteristic times τ+X = 105µs ± 1µs and τ−X = 106µs ± 1µs
for the respective initial states. Additional measurements with dispersive readout confirm
this result [Grimm et al. 2020].

Similarly, the coherence times of both the ⟨Y ⟩ and ⟨Z⟩ components are measured using
CQR, but employing only operations on the Kerr-cat qubit after the initial mapping from
|n = 0⟩ →

∣∣C+
α

〉
(see Fig. 5.5c,e). Most notably, a single Z(π/2) gate based on free Kerr
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Figure 5.5 | (a) Pulse sequence for (b). After initialization in |±X⟩ ≈ |±α⟩ (Y (±π/2) on the
Fock qubit and mapping) and variable wait time ∆t, a pulse at frequency ωcqr = ωb − ωp/2
implements cat-quadrature readout (CQR). (b) Kerr-cat qubit ⟨X⟩-component coherence:
open blue circles are data and solid black lines are single-exponential fits with decay times
τ+X = 105µs± 1µs and τ+X = 106µs± 1µs. (c) Pulse sequence for (d). After initialization
in |±Y ⟩ (mapping |0⟩ →

∣∣C+
α

〉
and X(∓π/2) gate) and variable wait time ∆t, a Z(π/2) gate

is preformed followed by CQR. (d) Kerr-cat qubit ⟨Y ⟩-component coherence with decay
times τ+Y = 2.51µs ± 0.06µs and τ−Y = 2.60µs ± 0.05µs. (e) Pulse sequence for (f). After
initialization in |±Z⟩ =

∣∣C±
α

〉
(mapping |0⟩ →

∣∣C+
α

〉
and either X(0) or X(π) gate) and

variable wait time ∆t, an X(π/2) and a Z(π/2) gate are preformed followed by CQR. (f)
Kerr-cat qubit ⟨Z⟩-component coherence with decay times τ+Z = 2.60µs ± 0.07µs and
τ−Z = 2.56µs ± 0.07µs.
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evolution is necessary to map the desired coherence to the X axis for CQR. The resulting
decay curves are displayed in Fig. 5.5d,f. Single-exponential fits of the data yield the de-
cay times τ+Y = 2.51µs ± 0.06µs, τ−Y = 2.60µs ± 0.05µs, τ+Z = 2.60µs ± 0.07µs, and
τ−Z = 2.56µs ± 0.07µs. These values are slightly smaller than the predicted bit-flip time
due to single-photon loss T1/2n̄ = 2.98µs [Haroche and Raimond 2006]. Through numeri-
cal simulations of the stochastic master equation, we find that introducing a single-photon
gain process through a jump operator √nthκ1a

† (where κ1 = 1/T1) may account for this
discrepancy. With this additional noise term, the prediction for the bit-flip rate becomes
2n̄(1 + 2nth)κ1. Using the thermal population nth = 0.04 measured in the Fock qubit with
|ϵ2| = 0 with a protocol involving pulses to higher excited states [Geerlings et al. 2013], we
would expect a bit-flip time of ≈ 2.8µs, which is still slightly larger than the experimen-
tally measured values. Heating to a value of nth = 0.08 (yielding ≈ 2.6µs) could account
for this difference. Having increased heating in the presence of strong microwave drives
may result from the bounded nature of the cosine potential [Lescanne et al. 2019]. Thus,
engineering Josephson junction circuits that can accommodate larger drive powers may be
key to further increasing coherence.

Our results demonstrate a 30-fold increase in the phase-flip time of the protected Kerr-
cat qubit with respect to the Fock qubit. As a biased-noise qubit, we achieve a noise bias
of ≈ 40. This bias and 30-fold increase comes at the expense of a linear degradation in the
shortest coherence time, here the bit-flip time. Crucially, we perform a full set of single-
qubit gates on the Kerr-cat qubit on timescales that are≈ 1% of its bit-flip time, with quoted
fidelities currently limited by SPAM errors. Moreover, we demonstrate a new form of
QND readout of the Kerr-cat qubit without turning off the stabilization. The combination
of error protection, fast gates and single-shot readout opens the door to using stabilized
Schrödinger cat states as physical qubits in a future quantum computer. The simplicity of
our implementation, which is moreover compatible with quasi-2D on-chip architectures,
provides a straightforward path to coupling several Kerr-cat qubits and demonstrating
operations between them. In particular, as we will discuss on more detail in the follow-
ing Chapter 6, our qubit permits a noise-bias-preserving controlled-NOT gate [Puri et al.
2020], which would be impossible with standard two-level systems [Guillaud and Mir-
rahimi 2019]. Moreover, Kerr-cat qubits could be applied as auxiliary systems for fault-
tolerant error detection on other logical qubits [Puri et al. 2019]. These applications will
require further improvements in device performance such as the bit-flip time, currently
limited by losses due to hybridization to the copper readout cavity.

The limitation of the phase-flip time also requires further investigation. Measurements
performed at other flux points with less third-order nonlinearity indicate that coherence
decreases when stronger drives have to be applied to the system to reach similar photons
numbers n̄ = |α|2. Similarly, an increase in photon number beyond the n̄ = 2.6 operating
point discussed in this chapter decreases coherence. This is probably related to heating
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effects associated with the strong driving of Josephson junctions [Slichter et al. 2012; Sank
et al. 2016; Lescanne et al. 2019] causing leakage to higher excited states outside of the Kerr-
cat qubit Bloch sphere. Such leakage can be counteracted through controlled two-photon
dissipation back towards the states of the Kerr-cat qubit [Puri et al. 2019], or similarly by
a colored spectrum of single-photon dissipation that ideally corrects the leakage without
further reducing the bit-flip time [Pu erman et al. 2021].

Two-photondissipation has previously beenutilized to autonomously stabilize Schrödinger
cat states [Leghtas et al. 2015; Touzard et al. 2018], but only recently has an exponential in-
crease in the coherent state lifetime been achieved [Lescanne et al. 2020]. The crucial insight
was that coherence was previously limited by heating events in auxiliary degrees of free-
dom with cross-Kerr to the mode hosting the Schrödinger cat qubit. These auxiliary modes
were necessary to provide the four-wave mixing needed to generate two-photon dissipa-
tion, but heating events caused dephasing noise with weight larger than κgap ≈ κ2|α|2+κ1,
which were uncorrectable errors. By engineering a nonlinear element that supported the
necessary four-wave mixing to generate κ2/2π = 40 kHz but with suppressed cross-Kerr
nonlinearity, the exponential increase in coherent state lifetime was achieved until satu-
rating at ≈ 1ms likely due to residual cross-Kerr coupling to another auxiliary qubit used
for measurement and tomography [Lescanne et al. 2020]. However, quantum operations
with these dissipation-only stabilized cats remain difficult to achieve due to the relatively
low value of κ2 [Touzard et al. 2018]. In the following chapter, we will explore how to fur-
ther extend the lifetime of Kerr-cat qubits by designing systems that can host larger cats;
but the optimal solution may be to rely mostly on the squeezing and Kerr nonlinearity for
high gate speeds, while correcting residual leakage with two-photon dissipation for longer
coherent state lifetimes.



6
Future directions for Kerr-cat qubits
In this chapter, we look toward future applications of the Kerr-cat as a noise-biased qubit
for quantum information processing. Namely, the Kerr-cat may implement an ancillary
qubit for the fault-tolerant error syndrome detection of other logical qubits [Puri et al. 2019],
as well as a logical qubit component in a larger code that promises to reduce the total of
number of physical qubits required to reach a sufficiently low logical error rate [Guillaud
and Mirrahimi 2019; Puri et al. 2020].

To see the need for fault-tolerant ancillary qubit interactions, many recent experiments
on bosonic codes are indeed limited by the quality of the ancillary transmon qubit [Legh-
tas et al. 2015; Ofek et al. 2016; Touzard et al. 2018; Hu et al. 2019; Lescanne et al. 2020;
Campagne-Ibarcq et al. 2020]. The nearly harmonic bosonic mode of interest must be en-
tangled with an the ancillary transmon for both gate operations and QEC. Transmon errors
that occur while entangled often produce errors on the bosonic mode that are uncorrectable
within the original QEC protocol. A first step toward fault-tolerance involves noise-biasing
the transmon by instead using the |n = 0⟩ and |n = 2⟩ as the computational states and ar-
ranging the interaction with the bosonic mode of interest to be transparent to transmon
decay events |n = 2⟩ → |n = 1⟩ that must be subsequently detected before further decay
|n = 1⟩ → |n = 0⟩ [Rosenblum et al. 2018; Reinhold et al. 2020]. An alternative strategy
might be to utilize undriven protected qubits [Gyenis et al. 2021a], for instance the fluxo-
nium [Manucharyan et al. 2009; Nguyen et al. 2019], the heavy fluxonium [Earnest et al.
2018; Zhang et al. 2021] or the 0-π qubit [Gyenis et al. 2021b] that have successfully in-
creased at least a single coherence time beyond transmons. These qubits however are de-
signed to operate at sweet spots in parameter space. To increase coherence, these sweet
spots are chosen to protect against the lab-frame environmental spectra of charge and flux
noise. As such, once drives are applied, the qubit will become sensitive to environmental
noise at different frequencies [Yan et al. 2013; Yan et al. 2016], not necessarily suppressed by
the previous parameter choices. This suggests the need for the additional complication of
dynamical sweet spots [Didier et al. 2019; Huang et al. 2021] to maintain the same level of
coherence during the gates, which is the most crucial time in regards to the fault-tolerance
of ancillary qubits.

Conversely, the Kerr-cat qubit is continuously driven and so all subsequent operations
will appear as perturbations on top of the autonomous stabilization in much the same way
as cat-quadrature readout (CQR) appeared as a perturbation (see Sec. 5.4). We may there-
fore expect any protection resulting in noise-bias to persist during entanglement interac-
tions. To improve Kerr-cat qubits for this application, further improvements in both the
gate fidelities and the coherent state lifetime are necessary. In the next section, we begin
to tackle both of these questions by optimizing for larger photon number cat states and
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explore the results on CQR and coherent state lifetimes.
For the longer term goals of quantum computation, autonomously stabilized two-legged

Schrödinger cat qubits have also been suggested as a means to reduce the overhead of
QEC to reach a sufficiently low fidelity for useful algorithms [Guillaud and Mirrahimi
2019; Puri et al. 2020]. These proposals build off the realization that noise-bias may be ex-
ploited to achieve higher error thresholds in certain QEC codes [Aliferis and Preskill 2008],
which were later extended to surface codes [Tucke , Bartle , and Flammia 2018; Bonilla
Ataides et al. 2021]. Although these techniques increase error thresholds for general noise-
biased qubits, they suffer from the no-go theorem that any Hamiltonian that implements
a controlled-not (CNOT) operation between two standard two-level system qubits must
unbias the noise channels of the respective qubits. Intuitively, this means the short-lived
coherence axis of one qubit must reduce the lifetime of the long-lived axis of the other,
since they must be coupled during the Hamiltonian evolution; there is not enough Hilbert
space to avoid this coupling.

Crucially, this no-go theorem, which was suggested [Aliferis and Preskill 2008] and
later proven [Guillaud and Mirrahimi 2019], has awork around through the use of Schrödinger
cat qubits [Puri et al. 2020]. By utilizing the Hilbert space already available within a single
oscillator, a noise-bias-preserving CNOT gate may be performed by exploiting the symme-
try and topology of the two-legged-cat code in phase space. By continuously deforming the
code space via the phase of the squeezing drive, the proposed implementation may be un-
derstood as a conditional exchange operation of the two coherent state |±α⟩ in phase space.
We will explore this topological CNOT gate in detail and a potential realization with two
Kerr-cat qubits in Sec. 6.2. If such a CNOT may indeed be implemented with sufficiently
high fidelities, the overhead associated with quantum computation may be significantly
reduced with Schrödinger cat qubits [Guillaud and Mirrahimi 2019; Puri et al. 2020], es-
pecially in surface codes [Darmawan et al. 2021] where magic-state preparation may also
similarly benefit [Singh et al. 2021].

6.1 Less Kerr for larger cats

With these applications in mind, we focus on improving the performance of the Kerr-cat
qubit. Although adding two-photon dissipation is a possibility [Puri et al. 2019], we would
like to extend the exponential suppression of phase-flips that saturated at n̄ = 2.6 in the
previous sample of Chapter 5 [Grimm et al. 2020]. In the purely two-photon dissipative
case [Lescanne et al. 2020], the coherent state lifetime saturated to ≈ 1ms for n̄ ≥ 5. Here,
we explore the photon-number dependence of the properties of the Kerr-cat qubit and show
that such lifetimes are not limited to the purely dissipative case. The structure of the Kerr-
cat Hamiltonian contains the salient properties for protection, namely the robustness to
perturbations by the most common environmental noises.
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In this section, we show coherent state lifetime improvements to ≈ 1ms, a factor of
380 improvement over the transverse relaxation rate of the Fock qubit in this sample, T2 =

2.8µs. The noise bias for this point reaches≈ 103, yet crucially with cat state lifetimes≈ 1µs
that falls linearly in n̄ from the Fock qubit life time of T1 = 23.5µs, which itself may be
straightforwardly improved with state-of-the-art fabrication techniques. Moreover, these
lifetimes are compatible with the same fast gates shown in Chapter 5, whose speed limit
ωgap ≈ −4K|α|2—while starting smaller than the previous sample—also scales linearly
with n̄. Finally, the same increase in n̄ that increases coherence also improves the qual-
ity of cat-quadrature readout (CQR), bringing it toward—although not yet surpassing in
speed—the best dispersive readout of transmon qubits [Johnson et al. 2012; Risté et al. 2012;
Hatridge et al. 2013; Jeffrey et al. 2014; Walter et al. 2017].

The most salient design change leading to these results is the reduction of Kerr nonlin-
earity by an order of magnitude to the Fock qubit anharmonicity 2K/2π = 0.98MHz as
measured by the Kerr-refocusing time [Yurke and Stoler 1988; Kirchmair et al. 2013]. We
actuated this reduction by increasing the number of SNAILs to an array of M = 2, increas-
ing the critical current of all junctions by the same factor (c. f. Fig. 2.3b), and reducing the
SNAIL’s junction inductance ratio α. Borrowing intuition from our results on improved
power handling of SPAs in Chapter 3, we may separate the nonlinearity into two cate-
gories: the nonlinearity we need to generate the Kerr cat Hamiltonian, and the rest of the
nonlinearity. Our design change reduces the three-wave mixing nonlinearity g3 (Eq. 2.45)
and the Kerr nonlinearity K (Eq. 2.53) that we require for stabilization; but it also reduces
the rest of the nonlinearity suspected to cause heating in response to strong drives [Slichter
et al. 2012; Sank et al. 2016; Lescanne et al. 2019]. Equivalently, we have increased the max-
imum number of allowed photons in the nonlinear resonator ncrit ∝ M2 (Eq. 2.48). Our
previous experiments indicated that drive-induced heating becomes problematic at some
fraction of ncrit. Given this assumption, we may derive an expected increase in Kerr-cat
size using Eq. 3.19 at which drive induced heating becomes problematic

|α|2 = |ϵ2/K|

= |2g3αp/K|

∝ M |αp|

∝ M2 (6.1)

where in the third line we invoke |g3/K| ∝ M (Eqs. 2.45–2.53), and in the last line that
the allowed ncrit scales the limit on |αp| ∝ M . Following this logic, we conclude that in-
creasing the number of SNAILs to decrease the Kerr nonlinearity effectively increases the
experimentally achievable cat size.

We may also ask what we give up under such a optimization to reduce Kerr nonlinearity
for larger photon numbers. To list them succinctly in order of importance, the possible
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drawbacks are

1. Slower, and thus lower fidelity, Z(π/2) Kerr gate which takes TZ(π/2) = π/2K irre-
spective of n̄.

2. Reduction of the energy gap ωgap ≈ −4K|α|2 might be expected, although if we
achieve the expected cat size increase in Eq. 6.1 and remember K ∝ 1/M2 (Eq. 2.53)
then ωgap is actually independent of M .

3. Slower, and thus lower fidelity, mapping gate; although, this may be sped up via
pulse engineering techniques [Puri, Boutin, and Blais 2017] and is not strictly nec-
essary if all preparation and measurement are done within the Kerr-cat qubit Bloch
sphere.

4. Slower, and thus lower fidelity, Fock qubit operations—gates and dispersive readout—
although again we do not intend to use them.

With these considerations in mind, we explore in the rest of this section an experimental
realization of M = 2 SNAILs and Fock-qubit anharmonicity 2K/2π = 0.98MHz intended
to create a larger and longer-lived Kerr-cat qubit.

6.1.1 Eigenstate pairing in Kerr-cats

To verify that we indeed may make a Kerr-cat qubit with larger average photon number,
we seek to validate our Hamiltonian. Specifically, consider Eq. 4.38 without two-photon
dissipation κ2 = 0

HKC = −∆a†a−Ka†2a2 + ϵ2a
†2 + ϵ∗2a

2 (6.2)

where ∆ = ωp/2 − ωa (or Eq. 3.18 if pump-induced Stark shift is included) and we have
ignored κ1 assuming it has minimal effect on the no-jump evolution in the regime |Im δ̃| ≪
1 (see Eq. 4.55). The predicted eigenspectrum for this Hamiltonian with∆ = 0was plo ed
in Fig. 4.3a.

In order to measure this eigenspectrum, we perform the experiment indicated in the
pulse sequence in Fig. 6.1a. We adiabatically ramp on the squeezing drive with no detun-
ing ∆ = 0 and an ϵ2 to achieve a known n̄ = |ϵ2/K| that was calibrated via Rabi oscillations
in a similar manner to Fig. 5.2. A cat-quadrature readout (CQR) is performed to prepare
|±X⟩ ≈ |±α⟩ based on the measurement outcome. We then apply a weak saturation spec-
troscopy tone at frequency ωspec and perform a second CQR to see if the spectroscopy tone
causes a transition.

The measured data of the second CQR measurement postselected on the first are plo ed
in Fig. 6.1b as a function of the swept spectroscopy tone detuning ωp/2 − ωspec and the
swept photon number n̄ = |ϵ2/K| of the Kerr-cat qubit that was independently calibrated.
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Figure 6.1 | (a) Pulse sequence for the spectroscopy in (b). The squeezing drive is ramped
on with strength ϵ2 adiabatically and an initial CQR measurement is performed to prepare
|±X⟩ ≈ |±α⟩. A weak saturation spectroscopy probe tone with frequency ωspec is applied
and a a second CQR measurement performed. (b) The results of the second CQR measure-
ment conditioned on the first as a function of average photon number n̄ = |ϵ2/K| (swept via
ϵ2) and detuning of the spectroscopy probe tone from the Kerr-cat frequency ωp/2− ωspec.
Gray box denotes excluded region where CQR is not a high-fidelity preparation. The inset
overlays predictions of Eq. 6.2 (orange) with no free parameters.

As ϵ2 → 0, the eigenspectrum clearly resembles that of a Kerr nonlinear oscillator where
the transition from |n = 0⟩ to |n⟩ is given by Kn(n − 1). The gray region corresponds to
photon numbers where the first CQR measurement is no longer a reliable QND preparation
nor calibrated correctly to be a high-fidelity measurement. As the squeezing drive strength
increases, we notice that the transition frequencies pair together as pairs of excited states
become degenerate. For instance, at n̄ = 5, the first two excited states are nearly degenerate
and the transition disappears for n̄ > 6. At this point, the eigenstates are degenerate to
within the bandwidth of the second CQR measurement and the measurement—now truly
a quadrature measurement for these two states as well—outcome is indistinguishable from
|±X⟩ ≈ |±α⟩ where the population started. Explicitly, if the first measurement prepares
|±X⟩ ≈ |±α⟩, a resonant transition would drive the state to ≈ D(±α) |n = 1⟩, which are
themselves eigenstates once the true eigenstates of definite photon-number-parity become
degenerate. As n̄ approaches 8, the second set of excited states begin to pair together and
themselves become degenerate.

The inset depicts a no-free-parameter prediction of the transitions (orange lines) based
on Eq. 6.2 with ∆ = 0, 2K/2π = 0.98MHz and ϵ2 calibrated as mentioned previously.
The remarkable agreement shows the true power of effective Hamiltonians like Eq. 6.2 to
capture the relevant dynamics in periodically driven systems. Furthermore, despite the fact
that the RWA approximation is not valid in this system, the spectroscopic agreement gives
us confidence that we are not missing important contributions to the effective Hamiltonian
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dynamics. In the current system, the effective of any rotating terms, which may be explicitly
cataloged and calculated order by order [Venkatraman et al. 2021], is to renormalize the
parameters in the effective Hamiltonian without adding distinct ones.

Finally, the degeneracy of the excited states depicted here will have a direct conse-
quence on the observed lifetime of the coherent states. In the previous sample of Chapter 5
where n̄ = 2.6, the first two excited states were outside of the double-well and not yet de-
generate. Therefore, any excitation event resulting from environmental applications of a†

or a†a would result in a phase-flip event. Once n̄ > 6 however, the excited state degen-
eracy means that an excitation even transferring population to them would not cause an
immediate dephasing event. There is a chance for single-photon loss κ1—or two-photon
loss but we assume κ2 = 0 here—to autonomously correct the leakage event before it causes
a logical phase-flip in the Kerr-cat qubit [Puri et al. 2019].

6.1.2 Longer coherence with larger cats

Given that we have spectroscopic evidence and Rabi oscillations between cat states (not
shown) to confirm that we can stabilize a Kerr-cat qubit with at least n̄ = 10 photons, we
pursue coherence measurements of the cat state and coherent state lifetimes respectively as
a function of n̄. Importantly, we use only CQR and gates within the Kerr-cat Bloch sphere
to perform these measurements. This has the advantage of being less reliant on the quality
of the Fock qubit, as well as the experimental advantage of a reduced number of calibration
experiments. For these experiments, we again set ∆ = 0. The squeezing drive induces a
negligible Stark shift for the range of n̄ considered, which cannot be detected via spurious
Z rotation (c. f. Eq. 5.4) given our coherence times.

The pulse sequence to measure the Schrödinger cat state lifetime, depicted in Fig.6.2a,
resembles a modified Ramsey sequence on the Kerr-cat qubit. We perform CQR and then a
Z(π/2) gate via free Kerr evolution for TZ(π/2) = 508ns to prepare the parityless cat |±Y ⟩.
We then wait a variable delay time ∆t, and perform a second Z(π/2) gate followed by
CQR. Single-exponential fits give the decay timescale for the cat state lifetime plo ed as a
function of n̄ = |α|2 in Fig.6.2c. Importantly, the cat state lifetime decreases as expected
∝ T1/2n̄ and is reduced to around 1µs at n̄ = 10, implying we pay linearly in photon
number with our Kerr-cat qubit stabilization as an autonomous QEC protocol.

Tomeasure the coherent state lifetime, weutilize the pulse sequence depicted in Fig.6.2b.
CQR prepares |±X⟩ ≈ |±α⟩ based on the measured outcome, and a second CQR measures
the coherent state population after a variable wait time∆t. Single exponential fits to the de-
cay of the coherence give the characteristic decay timescales plo ed in orange as a function
of n̄ in Fig. 6.2b.

In contrast to the purely two-photon dissipative cats where coherent state lifetime in-
creases exponentially and then saturates [Lescanne et al. 2020], the measured coherent state
lifetime here displaces distinct features as a function of photon number. At low n̄, we ob-
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Figure 6.2 | (a) Pulse sequence for measuring cat state lifetime is a modified Ramsey se-
quence: adiabatic mapping, CQR readout and Z(π/2) gate to prepare |±Y ⟩, wait a variable
delay time ∆t, then Z(π/2) and CQR readout. (b) Pulse sequence for measuring coherent
state lifetime. Both experiments are fit to single exponentials and decay timescales are re-
ported in (c). (c) Cat (blue) and coherent (orange) state lifetimes as a function of n̄ = |ϵ2/K|
with no explicit pump detuning ∆ = 0. Cat lifetimes follow expected dependence ∝ 1/n̄.
Coherent state lifetime changes between regimes of exponential increase and nearly flat
plateau regions.

serve an exponential increase in lifetime until an apparent plateau at τ±X ≈ 250µs for
n̄ ≈ 3. The plateau continues, with a slight downward trend, until another sharp uptick
in lifetime around n̄ ≈ 6. This uptick itself saturates at ≈ 350µs with another downward
trend until n̄ ≈ 9 where the lifetime increases yet again until finally saturating at 400µs.
After the plo ed n̄, the lifetime monotonically decreases.

To understand the emergence of these apparent steps in coherent state lifetime, con-
sider again the eigenspectrum as measured by the spectroscopy in Fig. 6.1b. The upticks
in lifetime occur at photon numbers n̄ ≈ 6 and n̄ ≈ 9 where the first pair and second
pair of excited states respectively become indistinguishably degenerate. From this obser-
vation, we may associate an explanation for each region of the coherent state lifetime. At
low n̄, the exponential lifetime increase originates from the exponential protection of the
degeneracy of the ground states. However, once the lifetime reaches a certain value it is no
longer limited by this error. Instead, in the first plateau, leakage events to the first excited
states, which are still above the double well barrier and at distinct energies, cause instant
dephasing events. When n̄ ≈ 6, the first excited states are now below the barrier and their
degeneracy becomes exponentially protected. A similar story occurs for the second plateau
and corresponding uptick; leakage to the second pair of excited states is the limiting factor
on coherence until their degeneracy becomes exponentially protected. As such, we see that
the structure of the Kerr-cat Hamiltonian affords continued error protection even against
leakage to higher excited states.

The goal then for further increased coherence may be achieved by increasing n̄ for the
same values of phenomenological noise (i. e. heating events). Experimentally, we tend to
see that increasing drive power increases the phenomenological heating that we earlier as-
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Figure 6.3 | (a) Pulse sequence for measuring coherent state lifetime (b). The squeezing
drive has strength |ϵ2/K| = 3.89 and explicit red-detuning ∆/2π = −5.5MHz. (c) Green
(orange) data points are measured ⟨X⟩ coherence conditioned on initial state |±X⟩ ≈ |±α⟩.
Black are single exponential fits constrained to have the same decay timescale τ±X =
1.06ms ± 0.047ms.

sociated with applying drive powers that approach the critical number of photons, which
is itself defined by the photon number that applies the critical current across the respective
Josephson junctions in the system. We may then ask if it is possible to increase the pho-
ton number without increasing the phenomenological heating. One way that we already
accomplished this was through reducing the Kerr nonlinearity and increasing ncrit. How-
ever, within the same device, we may also utilize the pump detuning to accomplish the
same goal.

To see this, consider the expression for photon number Eq. 4.53 in the bistable regime
with Im δ̃ → 0 and κ2 = 0

|α|2 =
∣∣∣∣ ϵ2K
∣∣∣∣ (1− Re

{
δ̃
})

(6.3)

where Re δ̃ = ∆/2|ϵ2| in this case. We see that choosing a red-detuned squeezing drive
∆ = ωp/2 − ωa < 0 will increase the photon number. The limit on red-detuning however
is provided by the tristable regime. In the tristable regime, additional tunneling paths be-
tween wells become available that are expected to degrade coherence [Dykman et al. 1998;
Marthaler and Dykman 2007]. To avoid the tristable regime, the condition then to remain
in the bistable regime is |δ̃| < 1, which in the case of κ1/∆ → 0 implies |∆| < 2|ϵ2|.

We experimentally investigate this property by explicitly detuning the squeezing drive
by ∆/2π = −5.5MHz and measuring the coherent state lifetime with the pulse sequence
in Fig. 6.2a. We choose |ϵ2/K| = 3.89, which achieves the maximum coherence for this
detuning. The measured data are displayed in Fig. 6.3b. Black lines are single exponential
fits, constrained to have the same fit parameters, which results in a decay timescale for the
coherent state lifetime of τ±X = 1.06ms ± 0.047ms.

6.1.3 Quantum jumps with CQR

To finish this section on improvements to the Kerr-cat qubit, we characterize the quality of
the cat-quadrature readout (CQR). As we saw in Sec. 5.4, the signal-to-noise ratio (SNR)
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Figure 6.4 | (a) Pulse sequence for (b) and (c). Squeezing drive is adiabatically ramped on
with strength |ϵ2/K| = 7.85 and an explicit red-detuning ∆/2π = −4.0MHz. CQR mea-
surements are repeatedly performed, each with total duration Tcqr = 4.44µs that includes
ring up, ring down and full integration time. (b) Histogram of all CQR measurements
conditioned on its preceding measurement with I-quadrature axis scaled by the standard
deviation σ of Gaussian fits (black). Counts centered at I/σ = 0 correspond to excited
states. Extracted QNDnessQ = 0.992. (c) Two examples of single trajectories (gray), where
each point corresponds to a single CQR measurement, show quantum jumps between
|±X⟩ ≈ |±α⟩. Green (orange) is average over many trajectories postselected on the first
measurement giving |±X⟩. Single exponential fits give time constant τcqr = 594µs± 19µs.

scales proportionally to the photon number n̄ = |α|2 of the Kerr-cat qubit (Eq. 5.12). Given
this, we might expect that increasing the photon number also improves CQR, and that is
indeed the case.

To experimentally investigate the CQR quality, we perform the pulse sequence depicted
in Fig. 6.4a. With an explicit detuning of∆/2π = −4.0MHz, we ramp on a squeezing drive
with strength |ϵ2/K| = 7.85. We then repeatedly perform CQR measurements in a pulsed
fashion with a total pulse duration including ring up and ring down of Tcqr = 4.44µs. In
this sample, the linewidth of the readout resonator was κb/2π = 0.4MHz, which could be
increased in future devices for faster readout. However, as noted in Sec. 5.4, conditional
displacement readout schemes like CQR are particularly good at short times and are also
amenable to fast reset protocols [Didier, Bourassa, and Blais 2015; Touzard et al. 2019].

A histogram of all measurements, conditioned on the preceding measurement and pro-
jected along the in-phase I quadrature, is shown in Fig. 6.4b. The axis is scaled by the
standard deviation σ of the Gaussian fit to the histogram (black). The spurious counts
near I/σ = 0 result from population in higher excited states due to the imperfect adia-
batic mapping with finite detuning ∆. As defined Eq. 5.15, the bare signal-to-noise ration
SNR = 125. We find experimentally that waiting for the system to thermalize with the
squeezing drive on before the first CQR measurement drastically reduces the excited state
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population (not shown). Despite this, we may also extract the QNDness (defined Eq. 5.17)
Q = 0.992 by experimentally calculating the probability that two successive measurements
have the same outcome, which is less than the decoherence-limited bound of 0.995. Using
a stringent threshold for preparation, we may extract the uncorrected readout fidelity, de-
fined in Eq. 5.16, as F = 0.996.

The quality of the readout may be further examined by considering the quantum jump
trajectories, of which two examples are plo ed (gray) in Fig. 6.4c. Each time point in the
trajectory corresponds to the measurement decision associated with a single CQR pulse.
Averaging many trajectories together recovers the decay green (orange) when the entire
trajectory average is postselected conditional on the initial state determined by the first
measurement. A single exponential fit extracts the timescale τcqr = 594µs ± 19µs, which
should be compared to the coherent state lifetime τ±X = 712µs when no CQR pulses—
other than an initial and final—are applied.

Quantum jumps, long since measured in macroscopically coherent superconducting
circuits [Vijay, Slichter, and Siddiqi 2011], are an excellent characterization of the health of
a measurement apparatus and are fundamentally important for investigatingmeasurement
backaction and weak measurement [Murch et al. 2013; Hatridge et al. 2013]. Importantly,
we note that these results are not quantum jumps of parity [Sun et al. 2014] in undriven
harmonic oscillators that were later used for error-tracking and QEC [Ofek et al. 2016].
Instead, they are quantum jumps between the macroscopically distinct period-doubled co-
herent states |±α⟩, which in turn are ground states of the periodically driven system. As
such, cat-quadrature readout of a Kerr-cat qubit implements a high fidelity measurement
as well as high quality state preparation. Additionally, with a ≈ 1ms lifetime and fast
single qubit gates, the Kerr-cat qubit is a promising tool for future applications, such as
fault-tolerant error syndrome detection [Puri et al. 2019; Grimsmo and Puri 2021].

6.2 Topological CNOT between two Kerr-cat qubits

In this section, we consider the implementation of the topological CNOT gate that preserves
the noise bias and how it may be implemented with two Kerr-cat qubits [Puri et al. 2020].
If high fidelity, the overhead associated with quantum computations may be significantly
reduced [Guillaud and Mirrahimi 2019; Puri et al. 2020], especially if cat-qubits form the
physical qubits for surface codes [Darmawan et al. 2021] that exploit the intrinsic noise bias.

6.2.1 Topological coherent state exchange

Before discussing the full CNOT, we focus on a single qubit gate—a discrete Z(π) = Z

gate—that contains the necessary features of topology and noise-bias-preservation that un-
derlie the CNOT. This gate is based on the exchange of the coherent states |±α⟩ in phase
space. The exchange operation will not depend on the path or speed, only the underly-
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ing topology associated with encircling the origin of phase space. To begin, consider the
definition of a Z gate, which can simply be defined by the eigenvalue equation

Z |±Z⟩ = Z
∣∣∣C±

α

〉
= ±

∣∣∣C±
α

〉
= ± |±Z⟩ (6.4)

just as we defined in Sec. 4.1. Next, note the symmetry of phase space of the two-legged
cat code is a two-fold discrete rotational symmetry. Thus there are two indistinguishable
codes in the same oscillator defined by the two definitions

|±Z⟩ =
∣∣∣C±

α

〉
, (6.5)∣∣±Z ′〉 = ∣∣∣C±

−α

〉
(6.6)

respectively. These two codes have the important relationship between them that∣∣∣C±
−α

〉
= ±

∣∣∣C±
α

〉
(6.7)

which again results from the rotational symmetry of the code. As such, if we loosely
consider the coherent states as indistinguishable particles, then an exchange operation of
α → −α between these two codes is equivalent to remaining within the same code but with
an additional Z gate. Explicitly, the exchange α → −α gives:

|±Z⟩ =
∣∣∣C±

α

〉
→
∣∣∣C±

−α

〉
= ±

∣∣∣C±
α

〉
= ± |±Z⟩ (6.8)

which is identically the definition Eq. 6.4. This exchange operation may be experimen-
tally applied by rotating cat states by π in phase space, which itself comes from a full 2π
rotation of the squeezing drive ϵ2. This underlying symmetry results directly from the
period-doubling phenomena intrinsic to the Kerr-cat qubit. The exchange operation is en-
tirely topological in origin; it depends neither on the path taken through phase space nor
the speed as long as the origin is encircled.

6.2.2 Exchange conditioned on a second cat: the CNOT

The preceding topological Z gate now must be conditioned on the state of a second Kerr-
cat qubit to implement the CNOT gate. To exactly accomplish this, the derived Hamilto-
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nian [Puri et al. 2020] has the form

HCNOT/h̄ = −Kb

(
b†2 − β2

)(
b2 − β2

)
−Ka

a†2 − α2e−i2ϕ

(
β − b†

2β

)
− α2

(
β + b†

2β

)
×

[
a2 − α2e+i2ϕ

(
β − b

2β

)
− α2

(
β + b

2β

)]

+ϕ̇

(
b+ b† − 2β

4β

)
a†a (6.9)

where a and b each represent Kerr-cat qubits with self-Kerr nonlinearities Ka and Kb re-
spectively, stabilized at coherent state amplitudes ±α and ±β respectively. For simplicity,
in this section we take α and β to be real numbers. To implement the gate, we control the
phase ϕ and roll its from ϕ(t = 0) = 0 → ϕ(t = T ) = π, which must be adiabatic compared
to ωgap.

ConsideringHCNOT line by line, the first line stabilizes cat b at coherent state amplitude
±β. The next two lines implement a rotation of cat a conditioned on b in |±β⟩. The final
line corresponds to a dynamic phase needed to perfectly cancel a small geometric phase;
for reasonably sized cats n̄ ≳ 3, this effect is negligible [Puri et al. 2020].

Consider Eq. 6.9 the ideal Hamiltonian to be implemented, we expand to write all the
terms in a more familiar form

HCNOT/h̄ =−Kb

(
b†2 − β2

)(
b2 − β2

)
(6.10)

−Kaa
†2a2 (6.11)

+Kaα
2 cos(ϕ)

(
a†2e+iϕ + h.c.

)
(6.12)

− iKa
α2

β
sin(ϕ)

(
a†2be+iϕ + h.c.

)
(6.13)

−Ka
α4

2β
sin(2ϕ)

(
ib† + h.c.

)
(6.14)

−Ka
α4

β2
sin2(ϕ)b†b (6.15)

− ϕ̇a†a/2 (6.16)

+ ϕ̇a†a
(
b† + h.c.

)
/4β (6.17)

where again ϕ(t = 0) = 0 → ϕ(t = T ) = π. Breaking down these terms individually from
top to bo om, we require

1. Stabilization of cat b via Kerr and squeezing drive.
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2. Self-Kerr of cat a.

3. Squeezing drive on cat a with amplitude Kaα
2 cos(ϕ)e+iϕ.

4. Squeezing drive on cat a that depends on b—this is the most important interaction
term.

5. Linear drive on b that only corrects leakage and causes no Rabi oscillations within
the Kerr-cat qubit (see Eq. 5.2).

6. Detuning on cat b.

7. Detuning on cat a.

8. Conditional displacement of cat b dependent on the photon number a†a.

While this list of terms may appear experimentally intimidating, numerical simulations
confirm that for cat sizes α2 = β2 > 4, only the first four lines are necessary for fidelities
be er than 0.99.

As such, there is only one new term that would not otherwise be present in a system of
two uncoupled Kerr-cat qubits: namely, Eq. 6.13. To see that this interaction term indeed
implements the required operation, we project Eq. 6.12–6.13 on the Kerr-cat Bloch sphere
of qubit b

PCb

(
Kaα

2e+iϕ
[
cos(ϕ)− i sin(ϕ)b/β

]
a†2 + h.c.

)
PCb

= Kaα
2e+iϕ

[
cos(ϕ)− i sin(ϕ)

(
Xb + ie−2β2

Yb

)]
a†2 + h.c.

= Kaα
2e+iϕ

[
cos(ϕ)− i sin(ϕ)Xb + sin(ϕ)e−2β2

Yb

]
a†2 + h.c.

= Kaα
2e+iϕ

[
e−iϕXb + sin(ϕ)e−2β2

Yb

]
a†2 + h.c.

≈ Kaα
2eiϕ(1−Xb)a†2 +O

(
Kaα

2e−2β2
)
Yba

†2 + h.c. (6.18)

from which it is clear that theXb eigenvalue determines whether the squeezing drive phase
on a acquires the phase factor ei2ϕ or 1.

Finally, we discuss how to implement the desired interaction term, which is a control-
lable third order coupling ginta

†2b + H.c.. As long as both modes participate in a four-
wave-mixing nonlinearity, a microwave drive at 2ωa − ωb implements the desired interac-
tion, which is a similar process to the pumping scheme used from two-photon-dissipation-
based Schrödinger cat state stabilization [Leghtas et al. 2015]. Therefore, any architecture
that supports capacitively coupled SNAIL-based qubits may implement this topological
CNOT between two Kerr-cat qubits. We have implemented one such architecture based
on striplines in 3D [Axline et al. 2016] in which all the experimental results in Sec. 6.1 were
obtained, but quasi-2D implementations are equally viable. At the time of writing, we have
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realized two coupled SNAIL-based nonlinear oscillators in this architecture that each in-
dividually support Kerr-cat qubits, and we are excited to experimentally investigate this
topological CNOT.



7
Conclusions
The experiments in this thesis have answered affirmatively that three-wave mixing is a
powerful tool for both quantum-noise-limited amplification and the protection of quan-
tum information via the autonomous stabilization of a Schrödinger cat qubit. The third-
order nonlinearity necessary for three-wave mixing may be added to a Josephson circuit
by replacing a single Josephson junction with a SNAIL and a DC-flux bias. This simplicity
opens up a host of opportunities to introduce three-wave mixing in quantum information
applications.

One exciting direction could be the application of Kerr-free three-wave mixing to acti-
vate quantum operations between otherwise uncoupled quantum systems. Often residual
cross-Kerr interactions limit the fidelity of operations and accumulate entanglement during
idle times of a quantum processor. The prospect of cross-Kerr-free systems that maintain
the minimal necessary nonlinear coupling to perform operations may be key to further
improvement, as was recently the case in for autonomous stabilization of a cat qubit via
two-photon dissipation [Lescanne et al. 2020].

Generally, both presented applications of single-mode squeezing—for amplification of
small signals with SPAs and stabilization of a Kerr-cat qubit—were shown to benefit from
systems with less bare nonlinearity: less third-order g3, less Kerr K, and less higher-order
nonlinearities. This reduction seems to push the design toward a purely linear system, yet a
purely linear system cannot perform three-wave mixing. Crucially however, the reduction
of nonlinearity was achieved without the addition of linear inductance; the nonlinearity’s
inductive participation ratio remained close to unity. Perhaps counterintuitively, lower-
ing nonlinearity in this fashion actually enhanced the achievable single-mode squeezing
strength ϵ2 = 2g3αp in these devices because more pump photons |αp|2 could be applied.
To make the point numerically, the best presented SPA reached |ϵ2|/2π ≈ 110MHz despite
g3/π ≈ 2MHz and Kerr nonlinearity 2K/2π ≈ 50kHz. As such, for applications where
the rate of the driven interaction—here, single-mode squeezing but it could be for tunable
coupling or control—that results from three-wave mixing is the important parameter, less
nonlinearity with large participation in the modes of interest is the recommended path
forward. In these instances, as is the case for room-temperature electronics, the ultimate
performance limits will result from parasitic inductance or technical restrictions on applied
pump power.

The further reduction of nonlinearity for increased performance of Schrödinger cat
qubits requires a more careful consideration. In qubit implementations generally, gate and
readout speed compared to decoherence rate is a key metric, and a large enough anhar-
monicity to prevent leakage errors during these operations is important. The success of
the transmon thus far is in part due to its simplicity in achieving coherence while main-
taining enough anharmonicity to allow for control speeds nearly limited by control elec-
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tronics. Meanwhile, protected qubits based on novel superconducting circuits promise
larger anharmonicity and increased coherence at the expensive of more complicated con-
trol schemes [Gyenis et al. 2021a]. Both transmons and other protected circuits require
appreciable bare nonlinearity to realize their respective Hamiltonians, and thus driven in-
teractions break down at smaller drive powers.

Kerr-cat qubits represent a different approach. As discussed in Chapter 6, Kerr-cat
qubits benefit—except for the fidelity of the free-Kerr-evolution gate—from reduced bare
nonlinearity that enable the creation of cat states with larger photon number and longer
coherent state lifetime. We expect this trend of less Kerr for larger cats and longer coher-
ent state lifetimes to continue; however, this is not the whole story. For quantum infor-
mation processing, the achievable gate fidelities involving Schrödinger cat states are also
crucial. The quality of these gates may be loosely determined by the gate speed limit to
decoherence rate ratio, ωgapT1/2n̄ ≈ 2KT1, which is independent of photon number and
clearly improves for larger K. As such, we expect there to be an optimum Kerr for a given
application depending on the tradeoff between achievable gate speed and noise-bias. Im-
provements in gate design and control techniques will help by increasing the gate speed
for a given ωgap, and thereby allowing a design with less nonlinearity to further increase
the coherent state lifetime and noise bias.

Focusing on future applications of autonomously stabilized two-legged cat qubits, the
Kerr-cat qubit shows promise for implementing a fault-tolerant error syndrome detector
for other QEC codes [Puri et al. 2019]. Preventing uncorrectable errors from propagating
to other qubits is crucial for the suppressing logical errors a the level necessary for use-
ful computations [Grimsmo and Puri 2021]. Additionally, Kerr-cat qubits may themselves
shed light on the quantum-classical transition [Zurek 2003] and may be useful in weak
force measurements [Munro et al. 2002]. Networks of coupled bistable oscillators can be
mapped onto Ising spins and used to investigate non-equilibrium quantum phase transi-
tions [Dykman et al. 2018] or to solve combinatorial optimization problems [Marandi et al.
2014; Goto 2016a; Puri et al. 2017].

Perhaps on a grander scale, Schrödinger cat qubits promise to reduce the overhead
associated with quantum error correction when compared to standard qubits made from
isolated two-level systems [Guillaud and Mirrahimi 2019; Puri et al. 2020]. Crucially, such
applications will require coupling multiple such qubits together with high fidelity oper-
ations. At the time of writing, the first two qubit gate between stabilized cats—the topo-
logical CNOT discussed in the previous chapter—is already under way. On top of this
however, there is still much more one can imagine—perhaps a bias-preserving Toffoli gate
between three cat qubits [Guillaud and Mirrahimi 2019]. Regardless, we believe the future
is bright for cats and SNAILs and the further inclusion of three-wave mixing in supercon-
ducting circuits. I look forward to seeing what will come.



A
The SPA beyond the RWA
In three-wave mixing, the strong microwave pump tone that supplies the energy for the
mixing process is often detuned from the modes of interest by a frequency of order the os-
cillator frequency. As such, the rotating wave approximation (RWA) is not valid in its most
simple form and higher order approximations are necessary [Gardiner and Zoller 2004;
Vool and Devoret 2017; Venkatraman et al. 2021]. This appendix more carefully considers
the SPA beyond the first-order RWA. Remarkably, the dynamics are often mappable back
to original effective Hamiltonians derived in Chapter 3 but with renormalized parameters.

A.1 Quantum Langevin equation (QLE) beyond the RWA

Beyond the RWA, we want equations of motion of the circuit degrees of freedom in which
the evolution of the bath is already integrated out. Separating out the circuit from its en-
vironment, modelled as a transmission line with characteristic impedance Zc, the equation
of motion for any system operator Y with system Hamiltonian Hsys is

Ẏ =
i

h̄

[
Hsys,Y

]
+

i

Zc

{
Φ̇− Vin, [Φ,Y ]

}
(A.1)

where Φ, the system’s flux at the location of coupling to the environment, appears because
we have chosen to express the environment in terms of the input voltage Vin from the
environment. The derivation of Eq. A.1 assumes an arbitrary system coupled to a bath with
a constant density of states [Gardiner and Zoller 2004]. The corresponding input-output
relation is

2Φ̇ = Vin + Vout. (A.2)

A.1.1 Linear oscillator

To emphasize the utility of Eq. A.1, consider the case of a transmission line coupled to a
linear LC oscillator. In this case, Hsys = Q2/2C +Φ2/2L, and taking Y = Φ and Y = Q

respectively yield

Φ̇ = Q/C (A.3)

Q̇ = −Φ/L− 1

Zc
(Φ̇− Vin) (A.4)

which are the standard classical equations now wri en for operators.
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A.1.2 Weakly nonlinear oscillator

For Hsys consisting of a single degree of freedom, we can introduce bosonic creation and
annihilation operators according to Φ = Φzpf(a + a†) where Φzpf =

√
h̄Za/2 with Za the

impedance. The equations of motion for the annihilation operator are

ȧ =
i

h̄

[
Hsys,a

]
+

Za

2Zc

[
Hsys,a+ a†

]
+ i

√
Za

2Z2
C

Vin (A.5)

which thus far has not made the RWA.
In the common cQED case where the transmission line is coupled to a weakly nonlinear

resonator as in Hsys/h̄ = ωaa
†a + · · · , the second commutator of the loss term may be

approximated to first order as
[
ωaa

†a,a+ a†
]
= ωa(−a + a†). The counter-rotating term

may be dropped within the RWA and the equation simplifies to

ȧ =
i

h̄

[
Hsys,a

]
− Za

2Zc
ωaa+ i

√
Za

2Z2
C

Vin (A.6)

Remembering that the energy decay rate of a classical damped harmonic oscillator κ =

ωaZa/Zc and ignoring the counter-rotating part of Vin under the RWA, we arrive at the
famous QLE under both the RWA and Markov approximation:

ȧ =
i

h̄

[
Hsys,a

]
− κ

2
a+

√
κain (A.7)

where ain = iVin/
√
2ωaZc has the interpretation of “square root of photon flux” in the

standard quantum optics notation [Clerk et al. 2010; Vool and Devoret 2017].

A.2 QLE including arbitrary coupling circuit

We can also extend the above treatment generating the QLEA.1 to include a frequency de-
pendent environment, similar to the treatment for extended bandwidth in amplifiers [Roy
et al. 2015]. The resulting QLE for single oscillator with canonical flux Φ and charge Q

coupled to an environment characterized by admi ance Yenv[ω] is

Q̇ =
i

h̄

[
Usys(Φ),Q

]
− Ienv (A.8)

Φ̇ =
Q

C
(A.9)

Ienv[ω] =
(
jωΦ[ω]− Vin[ω]

)
Yenv[ω] (A.10)

where Usys(Φ) is the arbitrary inductive potential of the oscillator in parallel with the ki-
netic energy given by a single capacitor C. The first equation expresses Kirchhoff’s current
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conservation law between the inductive and capacitive branches of the resonator and the
leakage current Ienv into the environment. The second equation is essentially Kirchoff’s
voltage law for the resonator. The last equation specifies how leakage current is related
to the system and transmission line degrees of freedom. We have wri en it in the Fourier
domain, because in general the coupling is nonlocal in time and therefore not Markovian.
The input voltage operator Vin[ω] contains the ω component of any incident signals as well
as the noise from the transmission line.

We again introduce bosonic raising and lowering operators use them to rewrite Eq. A.9

ȧ+ ȧ† =
Qzpf

ΦzpfC
i(a† − a) (A.11)

= ωai(a
† − a) (A.12)

while remembering that all operators including a(t) and a†(t) in the Heisenberg picture
are time dependent. We are free to take the Fourier transform with respect to this time
dependance to get the exceedingly convenient relation

a[−ω]† = −ω − ωa

ω + ωa
a[ω] (A.13)

between the Fourier components of the creation and annihilation operators for excitations
inside an oscillator with frequency ωa.

This relation summarizes the RWA in the Fourier domain. It implies that for nearly
resonant signals and responses the a[−ω]† term can be dropped from equations for a[ω],
because it is suppressed by the fractional detuning of the signal. However, for off-resonant
signals like those often used as pumps for 3-wave mixing processes, there is no suppression;
the system of Eqs. A.8-A.9 cannot be reduced to a single first order differential equation as
in the standard RWA QLE (Eq. 3.1).

A.3 Distributed-element model of the SPA

While the lumped-element model in Sec. 2.2 elucidates the important details in the theo-
retical treatment of the SPA and provides physical intuition, it cannot strictly be applied
to the SPA devices presented in this thesis. In the SPA, the SNAIL array is embedded in a
transmission line resonator, which is a distributed element. Later versions of SPAs actually
consider the SNAIL array itself as a nonlinear transmission line [Sivak et al. 2020], but here
we focus on the regime where the SNAIL array may be considered lumped.
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The Lagrangian of such a system can be wri en as

L =

(∫ −0

−lMS/2
+

∫ lMS/2

+0

)[
c

2
(∂tϕ)−

1

2ℓ
(∂xϕ)

2

]
dx

−MUS

(
φr − φl

M

)
, (A.14)

where c is the capacitance per unit length and ℓ is the inductance per unit length. The gen-
eralized flux ϕ(x, t) on the transmission line is a one-dimensional massless Klein-Gordon
field which has a discontinuity at x = 0, where the transmission line is interrupted by the
lumped-element SNAIL array. For convenience, we have introduced φl = ϕ(−0, t)/φ0 and
φr = ϕ(0+, t)/φ0 to denote the superconducting phase on both sides of the array.

Using zero current boundary conditions at x = ±lMS/2 and linearizing the Lagrange
equation of motion for this system, we can perform an eigenmode decomposition and find
the resonant frequencyωa of the structure as the smallest nontrivial solution of the equation

ωa tan
(
π

2

ωa

ω0

)
=

2Zc

MLs
(A.15)

whereZc =
√

ℓ/c is the characteristic impedance of the transmission line, andω0 = π/lMS
√
lc

is the resonant frequency when the array of SNAILs is replaced with a short.
Following Refs. [Wallquist, Shumeiko, and Wendin 2006; Nigg et al. 2012], we calculate

the nonlinearities of the SPA as

g3 =
4Zcc3
3M2LJ

√
Zc

RQ

 cos2
(
π
2
ωa
ω0

)
π ωa

ω0
+ sin

(
π ωa

ω0

)

3/2

, (A.16)

2K =
ωa sin2

(
π ωa

ω0

)
cot
(
π
2
ωa
ω0

)
c2M2

[
π ωa

ω0
+ sin

(
π ωa

ω0

)]2 Zc

RQ

×

c4 − c23
c2

3 + 5
(
ωaMLs
2Zc

)2
1 + 3

(
ωaMLs
2Zc

)2
 , (A.17)

where RQ = h̄/(2e)2 is the reduced resistance quantum. More complete derivations avail-
able in Ref. [Sivak et al. 2019; Sivak et al. 2020].

The limits of small and unity participation ratio correspond in this model to MLs ≪
Zc/ωa and MLs ≫ Zc/ωa, respectively. In these limits, the corrections to Kerr due to c3

coincide in both the distributed- (Eq. A.17) and lumped-element (Eq. 2.53) models.
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A.4 Harmonic balance including period-doubling

Although used for the original study of SPA dynamic range [Fra ini et al. 2018], itself based
on previous works [Kamal, Marblestone, and Devoret 2009; Zhou et al. 2014; Sundqvist and
Delsing 2014], this section follows the notation of later work that self-consistently includes
the period-doubling effect [Sivak et al. 2019].

We wish to analyze the response of the SPA system using standard input-output theory
together with the QLE for mode a. First, recall that a linear harmonic oscillator pumped
at ωp and probed at ωs responds independently to each of these frequency components of
the incoming field. In contrast, a nonlinear oscillator like the SPA will produce a response
at all harmonics ωmn = mωp + nωs. The conventional DPA theory in Sec. 3.2 only takes
into account one additional harmonic (the idler) at ωi = ωp − ωs, although in practice all
higher intermodulation products (IMDs) will be created. Their magnitudes are often small
and therefore neglecting these harmonics is a reasonable starting point.

To go beyond these treatment, we must account for further harmonics generated by
through mixing to other frequencies. Up to second order in harmonic balance, we consider
the following harmonics:

1. Pump ωp, signal ωs, and idler ωi = ωp − ωs comprise the minimal set need for the
DPA model of Sec. 3.2.

2. 2ωp, 2ωs, 2ωi, ωp+ωs, ωp+ωi, ωs−ωi, and DC are required in the consistent calculation
that takes into account Stark shift that is linear in photon number. These harmonics
lead to g23/ωa corrections to K and the pump-induced Stark shift

(
32
3 g4 − 28

g23
ωa

)
np

3. ωp/2, ωp/2− ωs, ωp/2− ωi account for the possible period-doubling effect examined
within the RWA in Chapter 4.

Given this list of harmonics and considering the relation Eq. A.13, we make the ansa for
the intracavity amplitude according to a semiclassical harmonic balance solution to the
QLE in the form

α(t) =
∑
x

(
αxe

−iωxt +
ωa − ωx

ωa + ωx
α∗
xe

+iωxt

)
(A.18)

where x runs over all harmonics described previously. We then plug this ansa into the
QLE Eq. A.8 with Hamiltonian HSPA Eq. 3.14 to generate a self-consistent set of equations
that links the amplitudes of all chosen harmonics. Importantly, we never invoke the RWA,
because all out-of-band harmonics do not satisfy it. This importantly relies on the relation
Eq. A.13. Instead of the RWA, the approximation made here is encoded in the number of
harmonics included; the amplitudes at other harmonics are assumed small and inconse-
quential to the dynamics at the considered frequencies.

Equations for the out-of-band harmonics can be partially solved and the system further
reduced to three complex equations for the amplitudes at frequencies ωs, ωi, and ωp/2 de-
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noted αs, αi, and αh for the signal, idler, and half -frequency or period-doubled portions of
the intracavity state. The three equations are:

(
ω +∆DPA + iκ/2

)
αs = us +

(
4g3αp + 12g∗4α

2
h

)
α∗
i + 12g∗4

(
|αs|2 + 2|αi|2 + 2|αh|2

)
αs

(A.19)(
−ω +∆DPA + iκ/2

)
αi = ui +

(
4g3αp + 12g∗4α

2
h

)
α∗
s + 12g∗4

(
|αi|2 + 2|αs|2 + 2|αh|2

)
αi

(A.20)(
∆DPA + iκ/2

)
αh = uh + 4g3αpα

∗
h + 12g∗4

(
|αh|2 + 2|αs|2 + 2|αi|2

)
αh (A.21)

where ω = ωs−ωp/2 is the signal detuning; ∆DPA = ωp/2−ωa−
(
32
3 g4 − 28

g23
ωa

)
np; and us,

ui, and up denote the drive strengths at the corresponding frequencies. Note that the pump
amplitude αp = up/ωa here does not include any corrections due to αs, αi, and αh—they
have been reabsorbed into the above equations. Strictly, αp is not on the same footing as
the other amplitudes and is more like a drive amplitude boundary condition.

A.4.1 Gain of the SPA

Given the set of harmonic balance equations A.19- A.21, we examine the response at the
signal frequency ωs by rewriting the first two equations as

(
ω +∆s + iκ/2

)
αs −

(
4g3αp + 12g∗4α

2
h

)
α∗
i = us (A.22)(

−ω +∆i − iκ/2
)
α∗
i −

(
4g3α

∗
p + 12g∗4α

∗2
h

)
αs = u∗i (A.23)

where

∆s = ∆DPA − 12g∗4

(
|αs|2 + 2|αi|2 + 2|αh|2

)
(A.24)

∆i = ∆DPA − 12g∗4

(
|αi|2 + 2|αs|2 + 2|αh|2

)
(A.25)

are the Stark-shift-adjusted signal and idler detunings respectively. Using the parameter
mapping to the DPA model of ϵ2 = 2g3αp and for simplicity assuming we are in the single
minimum regime such that αh = 0, the system reduces to ω +∆s + iκ/2 −2ϵ2

−2ϵ∗2 −ω +∆i − iκ/2

 αs

α∗
i

 =

 us

u∗i

 (A.26)
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Inverting the susceptibility matrix, we arrive at αs

α∗
i

 =
1

D[ω]

 −ω +∆i − iκ/2 2ϵ2

2ϵ∗2 ω +∆s + iκ/2

 us

u∗i

 (A.27)

D[ω] =
(
ω +∆s + iκ/2

) (
−ω +∆i − iκ/2

)
− 4|ϵ2|2 (A.28)

which directly maps to the DPA model of Sec. 3.2 but with slightly different Stark-shift-
renormalized detunings for the signal and idler amplitudes. Using the input-output rela-
tion, we then find the signal amplitude gain

gs[ω] = us,out/us = iκαs − 1

=
iκ
(
−ω +∆i − iκ/2

)
D[ω]

− 1

=

(
−ω +∆i − iκ/2

) (
−ω −∆s + iκ/2

)
+ 4|ϵ2|2(

ω +∆s + iκ/2
) (

−ω +∆i − iκ/2
)
− 4|ϵ2|2

(A.29)

and the corresponding phase-preserving power gain G[ω] = |gs[ω]|2

G[ω] = 1 +
4|ϵ2|2κ2(

(∆i − ω)(∆s + ω) + κ2/4− 4|ϵ2|2
)2

+ (∆i −∆s − 2ω)2κ2/4
(A.30)

≈ 1 +
4|ϵ2|2κ2(

∆2
s − ω2 + κ2/4− 4|ϵ2|2

)2
+ ω2κ2

(A.31)

where is last line we have used ∆i ≈ ∆s in the large gain limit where |αi|2 ≈ |αs|2. This
result is now matches the gain of an ideal DPA Eq. 3.9 with a detuning renormalized by
the Stark shift of the incident signal.

A.4.2 Period doubling multi-stability

We can now rederive the multi-stability regions from Sec. 4.7 but without invoking the
RWA. Up to second order in harmonic balance, we have the equation of motion for the
amplitude αh oscillating at ωp/2 in the lab frame Eq. A.21. To find ground state multi-
stable solutions, we suppose there are no drives applied other than the squeezing drive at
ωp/2. Thus, we set us = 0, ui = 0, uh = 0; this immediately implies αs = 0 and αi = 0. The
remaining Eq. A.21 reduces to(

∆DPA − 12g∗4|αh|2 + iκ/2
)
αh = 4g3αpα

∗
h (A.32)



A.4 | Harmonic balance including period-doubling 132

which is exactly Eq. 4.43 from the RWA case of Sec. 4.7 if we make the parameter mapping

ϵ2 = 2g3αp (A.33)

κ1 = κ (A.34)

∆̃ = ∆DPA + iκ1/2

= ωp/2− ωa −

(
32

3
g4 − 28

g23
ωa

)
np + iκ1/2 (A.35)

K̃ = −6g∗4 (A.36)

Thus, the solution to second order on harmonic balance can be mapped exactly to the RWA
solution, but with a renormalized parameters. Specifically, the squeezing strength ϵ2 is
renormalized; the prefactor is now 2 instead of 3 from naïve combinatorics within the RWA.
And the detuning ∆DPA is now parametrically dependent on the pump power and thus ∆
depends linearly on |ϵ2|2 and the multi-stability diagram of Fig. 4.4 bends quadratically to
the left (assuming the standard case of negative anharmonicity) [Wustmann and Shumeiko
2013; Sivak et al. 2019].

Two photon loss from pump depletion

Although two-photon loss does not appear (i. e. K̃ is found to be real and thus κ2 = 0),
there is a straightforward way to alter the SPA model to find an emergent two-photon loss.
In fact, the necessary addition is none other that the standard model for pump depletion [Roy
and Devoret 2018].

To see this, consider the way two-photon loss κ2 has thus far been engineered [Mir-
rahimi et al. 2014; Leghtas et al. 2015; Touzard et al. 2018; Lescanne et al. 2020]. A nonlinear
auxiliary mode with annihilation operator b at frequency ωb and single-photon loss κb is
driven at frequency ωp − ωb ≈ 2ωa − ωb to generate the effective interaction Hamiltonian

Hint/h̄ = ga2b† + H.c. (A.37)

where g is proportional to the drive amplitude and the effective cross-four-wave-mixing
nonlinearity. Within the RWA and assuming g ≪ κb so that the bmode may be adiabatically
eliminated, we write the QLE for b and find the steady state amplitude as β = −i2gα2

h/κb.
The new harmonic balance equation for αh is(

∆DPA − (12g∗4 − i4|g|2/κb)|αh|2 + iκ/2
)
αh = 4g3αpα

∗
h (A.38)

which affords the same parameter mapping except with K̃ = −6g∗4 + iκ2/2 and κ2 =

4|g|2/κb. Thus, this induces an effective two–photon dissipation of with strength κ2 in
accordance with the RWA model of stabilized cat qubits in Chapter 4.
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To connect with the study of pump depletion in linear parametric amplifies, we notice
the same interaction Eq. A.37 may be generated without an additional drive if cross-three-
wave couplings are available. Indeed, designing the auxiliary mode’s frequency ωb = ωp

causes the interaction to be resonant and the resultant interaction strength g ∝ φ2
a,zpfφb,zpf.

This corresponds to the worst-case scenario for pump depletion in parametric amplifiers;
the pump tone is resonant with the mode delivering the current to the inductive nonlinear-
ity causing ϵ2 and thus the gain to be more sensitive to incident signal photons. Interest-
ingly, when |ϵ2|2 > |∆̃|2 in the bi-stable regime, this pump depletion mechanism actually
further stabilizes the resultant cat-qubit. Contrary to below threshold for parametric am-
plification, intentionally increasing the pump depletion effect may be desirable in future
implementations of Kerr-cat qubits to increase κ2 with no added microwave drive tones.



B
Master equations and effective Hamil-

tonians
This chapter will explore the relationship between the stochasticmaster equations, Langevin
equations and the quantum jump interpretation of evolution under an effective no-jump
Hamiltonian that is interrupted by jumps. Rather than a complete description of each, we
will simply define each case and point out salient references. The details given are intended
not to be complete (since quantum optics textbooks [Gardiner and Zoller 2004; Haroche and
Raimond 2006] are dedicated to this) but to aid our discussions in future sections of this
this thesis. We will specify exclusively to single-oscillator systems. Each of these descrip-
tions of open quantum systems has their merit and often different descriptions provide
different intuition so it useful to understand common loss mechanisms from each of these
perspectives.

B.1 Master equations in Lindblad form

The master equation describes the reduce density matrix of the system after tracing out
the environment [Haroche and Raimond 2006]. Based on a Kraus sum formulation and
the Markov approximation that the environment is memory-less—correlation time shorter
than any relevant dynamics—the master equation in Lindblad form for the density matrix
ρ(t) of the system of interest is

dρ(t)

dt
= − i

h̄

[
H,ρ(t)

]
+
∑
µ

D
[
Lµ

]
ρ(t) (B.1)

where the summation is over all jump operators Lµ and the Lindblad superoperator D [O]

for and arbitrary operator O is defined

D [O]ρ = OρO† − 1

2

(
O†Oρ+ ρO†O

)
(B.2)

which has two types of terms: The first term is the jump term responsible for evolution
under application of the jump operatorO. The second set of terms is the no-jump evolution
that originates from the environment witnessing no jumps; this information that no jumps
have occurred necessarily updates the density matrix through renormalization insisting
that the density matrix has Trρ = 1.

To cast this more explicitly, we can write the master equation (B.1) in the form

dρ

dt
= − i

h̄

(
Heffρ− ρH†

eff

)
+
∑
µ

LµρL
†
µ (B.3)
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where we have defined an effective non-Hermitian Hamiltonian

Heff = H− i
h̄

2

∑
µ

L†
µLµ (B.4)

that generates the no-jump evolution of the density matrix. Heff is diagonalizable, which
follows from

[
Heff,H†

eff

]
= 0, but the eigenvalues are in general complex in contrast to its

Hermitian counterpart H. In the context of storing and manipulating quantum informa-
tion, it is often convenient to analyze the jump-evolution separately as these jumps could,
for instance, correspond to errors. The eigenstates of Heff are a convenient basis for this
analysis. Specifically, we will often design an Heff to accomplish a specific task (e.g. sta-
bilize a Bloch sphere or enact a desired operation) and then subsequently ask how jumps
will change the outcome or cause errors.

B.2 Wigner function evolution

Density matrices of an oscillator can always be mapped to Wigner functions or characteris-
tic functions; so density matrix evolution can also be similarly mapped. These phase-space
representations of density matrices preserve the natural locality that is often lost when
looking at a general density matrix. Moreover, evolution is phase space is particularly
convenient when comparing evolution to the classical behavior of a similar system and
isolating the salient features of the dynamics that rely on quantum-beyond-classical me-
chanics [Zurek 2003].

B.2.1 Definitions

Following [Haroche and Raimond 2006], we define the symmetric order characteristic func-
tion

C
[ρ]
s (λ) =

〈
D(λ)

〉
= Tr

[
ρeλa

†−λ∗a
]

(B.5)

where the superscript allows for the generalization to C
[O]
s (λ) for an general operator O by

replacing O on the right hand side. We will often suppress the superscript when using the
density matrix such that Cs(λ) = C

[ρ]
s (λ).

The Wigner function is the 2D Fourier transform of Cs(λ) defined

W (α) =
1

π2

∫
d2λCs(λ)e

αλ∗−α∗λ (B.6)

=
2

π
Tr
[
D(−α)ρD(α)P

]
(B.7)

where the second line we have used the equivalent representation as the average value of
parity P = eiπa

†a of the displaced density matrix. A similar generalization via a Fourier
transform of the above defines W [O](α) with W (α) = W [ρ](α). Both the Wigner function
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and the symmetric order characteristic function are complete representations of the density
matrix ρ(t) and so we are free to translate between them at will. Visualizing dynamics in
the space of Wigner functions will be a particularly useful tool.

For completeness and ease of some calculations, we also define the normal- and anti-
normal-order characteristic functions

C
[ρ]
n (λ) = Tr

[
ρeλa

†
e−λ∗a

]
(B.8)

C
[ρ]
an (λ) = Tr

[
ρe−λ∗aeλa

†
]

(B.9)

which are related to the symmetric order characteristic function via

C
[ρ]
n (λ) = e|λ|

2/2C
[ρ]
s (λ) (B.10)

C
[ρ]
an (λ) = e−|λ|2/2C

[ρ]
s (λ) (B.11)

The Husimi-Q distribution is similarly defined as the Fourier transform of the anti-normal-
order characteristic function

Q[ρ](α) =
1

π2

∫
d2λCan(λ)e

αλ∗−α∗λ (B.12)

=
1

π
⟨0|D(−α)ρD(α) |0⟩ (B.13)

which, in the second line, we express as the overlap with the vacuum, commonly experi-
mentally reconstructed through histograms of heterodyne-detected signals.

B.2.2 Fokker-Planck equations

In general can view loss as a diffusive process in phase space [Zurek 2003]. To see this, we
will focus on the evolution of the Wigner function. If we have the general master equation
(B.1), we can derive a differential equation for the dynamics of the Wigner function

dW [ρ]

dt
= − i

h̄

(
W [Hρ] −W [ρH]

)
+

1

2

∑
µ

(
2W [LµρL

†
µ] −W [L†

µLµρ] −W [ρL†
µLµ]

)
(B.14)

= − i

h̄

(
W [Heffρ] −W [ρH†

eff]

)
+
∑
µ

W [LµρL
†
µ] (B.15)
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which is still has a quite general form. To reduce the right hand side to only a function of
W [ρ], we need the correspondence rules

W [Oa†] =

(
α∗ +

1

2

∂

∂α

)
W [O] (B.16)

W [a†O] =

(
α∗ − 1

2

∂

∂α

)
W [O] (B.17)

W [Oa] =

(
α− 1

2

∂

∂α∗

)
W [O] (B.18)

W [aO] =

(
α+

1

2

∂

∂α∗

)
W [O] (B.19)

where α and α∗ are treated as independent variables for differentiation. Given that any
operator in the Hilbert space of a single oscillator can always be expressed as a function of
a and a†, the above relations are sufficient to reduce the dynamics to a differential equation
for W [ρ](α, α∗, t).

B.3 Some common dissipators

Here, we list some common dissipators of oscillators in superconducting circuits. We will
derive the effective no-jump Hamiltonian for each example, and show that the no-jump
evolution from all of these jump operators was indeed included in the model of two-legged
cat state stabilization in Chapter 4.

B.3.1 One-photon loss

Single-photon loss comes from the environment coupling to the photon annihilation oper-
ator operator a with a given weight. This can be expressed succinctly with a single jump
operator L =

√
κ1a, leaving the master equation

dρ

dt
= κ1D [a]ρ (B.20)

which can be expressed via the effective Hamiltonian term −iκ1
2 a†a.

The differential equation of the Fokker-Plank type for the Wigner function is

d

dt
W [ρ](α, α∗, t) =

κ1
2

(
∂2

∂α∂α∗ +
∂

∂α
α+

∂

∂α∗α
∗

)
W [ρ](α, α∗, t) (B.21)

where the second two terms represent a drift toward the origin α = α∗ = 0 at rate κ1/2

and the first term maintains the quantum fluctuations, preventing the Wigner function
from collapsing to delta function. Instead, the steady state can be shown to be the vacuum
W [|0⟩⟨0|](α) = 2

πe
−2|α|2 .
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B.3.2 One-photon gain and loss

Environments are not always cold and may be characterized as a black-body with a given
temperature that sets a certain thermal population nth equilibrium. To model this, we in-
clude single photon gain as well as loss to get the master equation

dρ

dt
= (nth + 1)κ1D [a]ρ+ nthκ1D

[
a†
]
ρ (B.22)

which leads to the effective Hamiltonian term

−i(2nth + 1)κ1a
†a/2. (B.23)

B.3.3 Two-photon loss

A two-photon loss corresponds to the Jump operator L =
√
κ2a

2 that promises to take
away two photons at a time, never one. The master equation with just this dissipation
takes the form

dρ

dt
= κ2D

[
a2
]
ρ (B.24)

which can be expressed via the effective Hamiltonian term

−i
κ2
2
a†2a2 (B.25)

or an imaginary Kerr nonlinearity.

B.3.4 Dephasing

Oscillators do not always keep the same frequency. Frequencies can drift slowly over time,
and jumps in other coupled-modes can also cause jumps in oscillator frequency. Slow drifts
over time—such as due to flux noise that whose spectrum is peaked at low frequencies—
may be modelled as Hamiltonian evolution under Hamiltonian term δa†ah where delta is
sampled every experimental shot from a distribution.

Heating events in other coupled modes with a cross-Kerr to the oscillator of interest,
as well as the higher frequency components of flux noise, may be modeled by the effective
white-noise-dephasing model with the jump operator L =

√
κϕa

†a. The effective no-jump
Hamiltonian due to this jump operator would be

−i
κϕ
2
(a†a)2 = −i

κϕ
2
(a†a+ a†2a2) (B.26)

which is an imaginary detuning term and Kerr term once normal ordered.
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