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The ambition of harnessing the quantum for computation is at odds
with the fundamental phenomenon of decoherence. The purpose
of quantum error correction (QEC) is to counteract the natural ten‑
dency of a complex system to decohere. This cooperative process,
which requires participation of multiple quantum and classical com‑
ponents, creates a special type of dissipation that removes the en‑
tropy caused by the errors faster than the rate at which these errors
corrupt the stored quantum information. Previous experimental at‑
tempts to engineer such a process faced an excessive generation of er‑
rors that overwhelmed the error‑correcting capability of the process
itself. Whether it is practically possible to utilize QEC for extending
quantum coherence thus remains an open question. The goal of this
thesis work is to answer this question. Our main result is the first
demonstration of a fully stabilized and error‑corrected logical qubit
whose quantum coherence is significantly longer than that of all the
imperfect quantum components involved in the QEC process, beat‑
ing the best of them with a coherence gain of G = 2.27 ± 0.07. We
achieved this performance by combining innovations in several do‑
mains including the fabrication of superconducting quantum circuits
and model‑free reinforcement learning. The experiment reported in
this thesis uplifts quantum error correction from proof‑of‑principle
studies to a practical tool for extending quantum coherence.
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1
Introduction
1.1 Motivation and central question

A minimal information‑carrying system consists of two states, conventionally la‑
beled 0 and 1, and it is called a bit. The quantum analog of a bit is a qubit. In
addition to states |0⟩ and |1⟩, a qubit can be in any superposition state, such as
|0⟩+ |1⟩. This abstract two‑dimensional object can be realized in Nature, for exam‑
ple, as polarization of a photon, or spin of an electron. We will refer to the qubit
state as “logical” when it is viewed from the computational perspective, to distin‑
guish it from the “physical” state of an object that hosts the qubit. For example, a
logical state |0⟩ + |1⟩ can be realized as a physical state | ↓ ⟩ + | ↑ ⟩ of a single spin.
The goodness of a physical implementation of a qubit from the computational per‑
spective is related to how reliably it can maintain the logical state and change this
state when required by the computation.

Any spurious interaction of the object with its environment, which is inevitable
in the real world, would interfere with the computation by changing in some way
the physical state of the object. If logical state was equivalent to a physical state,
e.g. |0⟩ = | ↓ ⟩ and |1⟩ = | ↑ ⟩ for a spin, it would be impossible to distinguish
if the change was caused by the spurious interaction or by the computation itself.
However, to achieve fault‑tolerant computation, there needs to be amechanism for
making such a distinction. In other words, errors should leave some unique sig‑
natures that would never be generated by the normal computation flow. Hence,
instead of encoding the logical state into a physical state of a two‑dimensional ob‑
ject, we need an object with an extended state space that has enough room to store
the information about the error − a kind of “meta‑qubit”.

The computation can then be intertwinedwith quantum error correction (QEC)
where the error signatures are checked, the errors are identified, corrected, and the
logical state is recovered. On a first glance, in quantum mechanics such a goal
seems unattainable, since simply checking for errors would “collapse” the quan‑
tum state. A beautiful realization in the theory of quantum error correction is that
the collapse of a physical state due to error check need not affect the logical state,
and hence fault‑tolerant quantum computation is in principle possible.

This can be achieved by distributing the logical information in the state space
of an object in such a way that whenever collapse due to error check happens,

1



1.2 | Overview of the field of QEC 2

the physical state finds itself in one of the orthogonal error subspaces which are
all replicas of the same logical subspace. The index of the subspace would then
serve as the error signature, while the collapsed state, although physically differ‑
ent, would still contain the same logical information. The state can then be brought
back to the logical subspace, and the computation can continue as if the error did
not happen.

This simple idea of quantum error correction has been formalized and theoret‑
ically developed over the past three decades. However, most theoretical propos‑
als of the QEC protocols operate at the level of abstraction insufficient to capture
the real‑world complexity of the physical implementations. So far, all attempts to
experimentally realize a QEC process faced an excessive generation of errors that
overwhelmed the error‑correcting ability of the process itself. Consequently, a
question of whether it is practically possible to harness QEC for extending the
coherence of a logical quantum state remains unanswered. The goal of this thesis
is to answer this question affirmatively and definitively.

1.2 Overview of the field of QEC

The first example of a quantum error correcting code was given by P. Shor in 1995
[1]. This code, constructed as two concatenated layers of a classical repetition code,
uses a register of nine two‑level systems (henceforth called “physical qubits”) to
create a single logical qubit that can protected against bit‑ and phase‑flip errors on
any single qubit in the register. Around the same time, A. Steane provided an ex‑
ample of a minimal code that achieves similar protection with only seven physical
qubits [2]. Early progress in the theory of quantum error correction was driven pri‑
marily by the ideas already developed in the classical information theory since the
seminal work of R. Hamming in 1950 [3]. As described earlier, QEC was treated as
a three‑step process of detecting the occurrence of an error, decoding its signature,
and applying a recovery operation. The so‑called stabilizer formalism [4] emerged
as a powerful general framework for constructing codes and QEC schemes that
follow this pattern. The most widely studied example of a stabilizer code is the
surface code [5, 6], which emerged from the ideas introduced by A. Kitaev in 2003
[7]. To generate the redundant state space, this code relies on a register of physical
qubits arranged on a two‑dimensional lattice. It has a remarkable phase transition
in the space of error probabilities − if the rate of physical errors is below a certain
threshold (and if a number of other assumptions are satisfied), then the logical er‑
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ror rate could be suppressed exponentially in the size of the lattice with QEC−we
call this property the threshold theorem. Many other QEC codes also have such a
property.

At the time of writing, the surface code is considered by the majority of the
QEC community to be themost promising candidate for achieving large‑scale fault‑
tolerant quantum computation. Without subscribing to this particular view, it is
still instructive to consider the history of the development of the field of experi‑
mental QEC from a perspective of approaching closer towards the technological
feasibility of a surface code. I would like to adopt such a perspective in this Chap‑
ter, since the rest of the thesis is focused on a somewhat different approach to QEC,
which, according tomy impression, is currently treated as merely an interesting al‑
ternative to themainstream. Towards the end of this Chapter, wewill discuss what
is the central difference between these approaches.

The experimental effort in QEC has undergone tremendous progress over the
years (although it lags far behind the theory to this day). Across different physical
qubit modalities from traveling photons, trapped ions, and cold atoms, to super‑
conducting circuits, the initial experimental efforts were focused on developing the
control primitives required for quantum computing: single‑qubit gates, entangling
operations, projective measurements [8].

An extraordinary progress has happened in the field of quantum superconduct‑
ing circuits, where collective degrees of freedom of billions of atomsmaking up the
circuit can display the properties of a single “artificial atom”. The first detection of
quantum tunneling of a macroscopic degree of freedom and the first observation
of the quantized energy levels of a macroscopic electrical circuit were done in the
experiments of M. Devoret, J. Martinis, and J. Clarke in 1985 [9, 10], giving birth to
an experimental direction that would decades later become the leading candidate
for realizing practical quantum computing. Starting with a demonstration of the
first superconducting qubit by Y. Nakamura et al. in 1999 [11], the quantum coher‑
ence of these circuits has followed rapid progress over the next two decades [12,
13]. The improvement by many orders of magnitude was driven by compounded
innovations in circuit design and fabrication techniques.

Once it became clear that error rates in superconducting circuits are at the level
from which is is conceivable to reach the threshold of the surface code, big tech
companies IBM and Google launched a parallel effort to scale the size of the super‑
conducting qubit registers. When I started on a PhD journey in 2016, registers of 5
qubits were state‑of‑the‑art [14], and over the past six years the size of these quan‑
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tum systems has increased to 54 qubits in 2018 [15] and 72 qubits in 2022 [16], with
individual control over all of them. This remarkable technological leap in such a
short time fuels the optimism of the quantum computing community that one day
the surface code can become a reality.

Powerful as it is, the surface code threshold theorem has a flip side: while all
of the surface code model assumptions are not met, such qubit register systems
will not display an improvement of the quality of a logical qubit compared to the
constituent physical qubits − such is the nature of phase transitions. A few re‑
cent demonstrations of small surface code instances [16–18] have made explicit the
massive technological challenges involved in driving progress along this direction.
Therefore, in the current era of noisy intermediate‑scale quantum (NISQ) devices
[19], from a point of view of executing quantum computations it is advantageous
to simply use the physical qubit state to represent the logical state.

The realization that useful quantum error correction might be far away in the
future drives the search for practical applications of imperfect but still impres‑
sively capable quantum devices of the day. During my PhD, one of the greatest
breakthroughs in this realm was the demonstration of “quantum supremacy” [15]
− an ability of a small quantum processor with only 54 qubits to perform a task
that the most powerful supercomputers on Earth would take orders of magnitude
longer time to emulate. This task, the generation of random samples from a spe‑
cific probability distribution, does not have any known applications, but it gives
strong evidence that quantum entanglement could indeed be a powerful comput‑
ing resource. The hope of the field is that quantum computing in the NISQ era
might be used for simulations of few‑but‑already‑too‑many‑body systems such as
organic molecules and perhaps even bigger systems that fall under the conven‑
tional many‑body physics umbrella. The first steps in this direction have already
been taken, see review [20]. Of course, there is no real boundary between NISQ
and beyond‑NISQ applications: the more reliable logical qubits become, the wider
range of problems can benefit from utilizing them.

My personal opinion is that technology required for the surface code will be
developed in the foreseeable future. My optimism is based on the achievements
by scientists and engineers of seemingly impossible technological feats, such as
detection of gravitational waves by the Laser Interferometer Gravitational‑wave
Observatory (LIGO) [21] or the discovery of the Higgs boson at the Large Hadron
Collider (LHC) [22], both of which happened during my scientific upbringing.
The theoretical foundations for these experiments did not raise much doubt, but
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it was not clear from the beginning how to overcome the involved engineering
challenges, and if the immense complexity of these systems would be ultimately
controllable. In light of such accomplishments, building the surface code for fault‑
tolerant quantum computing appears possible given enough resources, human ef‑
fort, and time. However, it would be naive to believe that everything about the
physics of large‑scale quantum coherent devices is already understood, and all that
remains is straightforward linear optimization and scaling. To some degree, classi‑
cal computing has followed this linear path after the invention of a transistor. How‑
ever, it remains absolutely unclear at this stage what would be the “transistor” of
the surface code. Currently, in quantum processors built by IBM and Google with
a forward looking goal of creating the surface code, the role of a base qubit is taken
by the transmon [23, 24]. At the same time, another circuit, the fluxonium [25], is
rapidly gaining popularity and showing great promise. New kinds of supercon‑
ducting circuits appear every year [26–28], and the old kinds are being improved
at a steady pace [29, 30]. Given this diversity, the honest assessment of the field
leads to a conclusion that the base element of the future surface code has likely not
even been invented yet.

Maybe this base qubit, instead of being represented with two energy levels of a
static superconducting circuit, should itself be a dynamically‑protectedmini logical
qubit? Viewed through the lens of the broader effort of the field to engineer better
qubits, the contribution of this thesis consists in developing an exotic qubit of such
a kind, error‑corrected in real time using an efficient QEC process tailored to the
properties of the system inwhich such a qubit is realized− the harmonic oscillator.

The encoding of a qubit into the large state space of a harmonic oscillator, which
is implemented in this thesis, was first proposed back in 2001, when I went to the
first grade of the primary school, by Gottesman, Kitaev and Preskill [31]. Other
“bosonic codes” were developed since [32–34]. Using an oscillator to realize QEC
proved quite successful in practice due to the inherent hardware efficiency− a large
state space is created with only a single degree of freedom. This efficiency can be
appreciated by comparison with a QEC approach based on registers of physical
qubits, such as the surface code, where orchestrating the quantum evolution of
multiple individually‑controllable degrees of freedom is poised to introduce a lot
of detrimental overhead. Harmonic oscillator is also used in the latter approach,
although it plays a different role there. It is therefore instructive to briefly review
its history in the context of quantum information processing.

When I started college in 2012, the Nobel prize in physics was awarded to
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D. Wineland and S. Haroche “for ground‑breaking experimental methods that en‑
ablemeasuring andmanipulation of individual quantum systems”. In experiments
by S. Haroche with cavity quantum electrodynamics (QED) systems [35], oscillator
is realized as an electromagnetic mode of a three‑dimensional cavity, and its state
is controlled via the interaction with atoms that are sent through this cavity. Early
on, it became clear that superconducting circuits are not only suitable to realize the
physics of cavity QED, but that they also provide unprecedented engineering flex‑
ibility and access to new parameter regimes. This seminal insight by A. Blais et al.
[36] and experiment by A. Wallraff et al. [37] started the field of circuit QED [38].

Similarly to cavity QED, the quantum state of an oscillator in circuit QED is
controlled via the interaction with an atom, albeit artificial. Given the large non‑
linearity of an atom, it is possible to restrict its dynamics to the lowest two energy
levels, hence realizing an approximate physical qubit. Different kinds of super‑
conducting circuits realize different artificial atoms and result in qubits with dif‑
ferent properties [12, 13, 39]. Some of them have the advantage of long coherence
times, some offer fast quantum control, some meet both these criteria to a certain
degree. In the multi‑dimensional design problem with various tradeoffs, a circuit
that strikes a good balance on many criteria while remaining fairly simple is the
transmon [23]. Transmon is currently used to realize qubit registers in the surface
code approach to QEC [16–18], but is is also used to realize an ancilla qubit for
control of an oscillator in the bosonic approach [40–43].

The experiment described in this thesis is built upon an architecture similar to
[40–43]. The two crucial building blocks in this architecture are the superconduct‑
ing cavity whose electromagnetic mode realizes a harmonic oscillator, and a trans‑
mon circuit whose mode of collective motion of Cooper pairs across the Joseph‑
son junction realizes an artificial atom used as a qubit. That the cooperative phe‑
nomenon of quantum error correction can be achieved with just two parties, an
oscillator and a qubit, is remarkable. As of now, there is no threshold theorem
that would guarantee an exponential suppression of the logical error probability
by scaling the code size in such a minimal system. Moreover, there are good rea‑
sons to believe that this is not possible given realistic error channels of any oscilla‑
tor, in which physical error probability increases linearly with the size of the occu‑
pied Hilbert space (instead of logarithmically, as in qubit registers). However, the
threshold theorem of a surface code, beautiful as it is, from a practical standpoint
is nothing more than a recipe for creating a reliable logical qubit. If a desired level
of reliability can be achieved by other means, without the phase transition, then it
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Figure 1.1 | Comparison of QEC experiments. In the first panel, lifetime is defined
as the decay time constant of the average channel fidelity to identity channel. Ar‑
rows point from the best physical lifetime to the achieved logical lifetime. They are
colored green if QEC has exceeded the break‑even point, and red otherwise. In the
second panel, logical error probability per cycle is obtained using logical lifetime
and cycle duration. Experiment labels are the following: cat1, four‑legged cat code
[40]; bin, binomial code [41]; cat2, truncated four‑legged cat code [43]; GKP1, grid
code [42]; SC1, distance‑three surface code [17]; SC2, distance‑three surface code
[18]; SC3, distance‑five surface code [16]; HH, heavy‑hexagonal subsystem code
[44]; and GKP2 is the grid code experiment from this thesis.
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is just as good for the quantum computation.
What is meant by reliability of a logical qubit is a difficult multi‑dimensional

question. The ultimate judge of the reliability is the capacity of the system to pro‑
vide correct answers to computational problems. None of the existing experimen‑
tal approaches to quantum computing is developed enough to be judged in such a
way. Hence, we need to look at different aspects of the logical qubit performance
that we expect to be correlated with the ultimate future ability to solve computa‑
tional problems. Among these aspects, themost informative is the fidelity of logical
operations, and in particular the logical two‑qubit gates. While there has been no
demonstrations of error‑corrected gates between logical qubits yet, we focus on a
simpler task of using quantum error correction to improve logical qubit memory,
i.e. to preserve the logical quantum state through time. In this regard, one can
identify three metrics:

1. The lifetime of a logical qubit.

2. The gain G due to quantum error correction, i.e. an improvement of the life‑
time of a logical qubit over the lifetime of the best physical qubit in the system.

3. The logical error probability per cycle of quantum error correction.

In Fig. 1.1, we compare the existing demonstrations of error‑corrected logical
qubits using these three criteria. The work described here achieved a significant
advancement of the state‑of‑the‑art on all these metrics. The demonstration of
gainG = 2.27 ± 0.07 beyond break‑even is the most important contribution of
this thesis. It marks a transition of QEC from proof‑of‑principle to a practical
tool for extending quantum coherence. This was accomplished through a combi‑
nation of multiple recent innovations in domains ranging from the fabrication of
superconducting quantum circuits, to low‑latency digital electronics, and modern
machine learning.

A lot of these innovations were done here at Yale. In particular, the circuit QED
architecture for realizing long‑lived oscillators in three‑dimensional aluminumcav‑
ities was developed in Refs. [45, 46], and the cavity used in this work was recycled
from an earlier experiment in Ref. [47]. The use of transmon circuit to realize high‑
fidelity quantum control of an oscillator in the dispersive regime of circuit QEDwas
developed in Refs. [48–51]. Fabrication of a transmon with state‑of‑the‑art quan‑
tum coherence was donewith a technique developed in [52] that was adopted from
an earlier work in Ref. [29]. Orchestration of the QEC process in this experiment
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is realized with a field‑programmable gate array (FPGA) controller developed and
first applied for quantum error correction in Ref. [40]. The first error correction
experiment with the same type of logical qubit as used in this thesis was done in
Ref. [42]; that work in particular has made key conceptual contributions that later
enabled the present experiment. The QEC protocol realized here was theoretically
proposed in Ref. [53] (and independently in Ref. [54], where it was also experimen‑
tally realized with a trapped ion system). While this body of previous research by
my colleagues has built a solid foundation of experimental and theoretical tech‑
niques verified in multiple experiments at Yale and other research institutions, a
novel aspect brought in bymy ownwork is the framework of model‑free reinforce‑
ment learning for quantum control [55]. It is deployed here to learn the parameters
of theQEC circuit in‑situ tomaximize the lifetime of a logical qubit. This framework
is derived from recent progress in the field of artificial intelligence, which captivates
me just as much as quantum physics. The reinforcement learning algorithm used
here, the proximal policy optimization (PPO), was introduced in Ref. [56].

1.3 The structure of this thesis

In this thesis, I do not explain the fundamental notions of quantumphysics, such as
the Bloch sphere representation of a qubit or the second quantization framework
for an oscillator, since a multitude of excellent introductory texts exists on these
topics, for example [35]. An introduction to open quantum systems, including the
quantum trajectory formalism, is presented in [57]. An introduction to quantum
information science, including the basics of quantum error correction, is given in
[58]. In the context of circuit QED with transmons and superconducting cavities,
the theses of my predecessors at Yale [59–62] and elsewhere [63, 64] provide an ex‑
position of the material in a way that would most closely match the background of
a potential reader. An accessible overview of the grid code is provided in [65]. For
those interested in machine learning, I compiled a selection of resources [66] that
proved especially useful in my self‑education on this topic. To mention a few, the
introductions to artificial intelligence in general [67] and to reinforcement learning
[68] in particular, are my favorite.

This thesis is organized as follows. For the benefit of time‑constrained read‑
ers, Chapter 2 describes the key contributions distilled to about 10 pages. The rest
contains details of the experimental and theoretical methods developed or adopted
in this experiment. In particular, Chapter 3 describes the experimental setup and
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the sample. Chapter 4 introduces system calibration and characterization experi‑
ments, Chapter 5 describes numerical optimization tools for quantum control and
error correction. Finally, Chapter 6 focuses on the grid code: it contains a brief in‑
troduction to the theory of this code, details of the QEC protocol and its implemen‑
tation, and several experiments that address various aspects of the logical qubit
performance. The outlook in Chapter 7 speculates on the future development of
the grid‑code QEC.



2
Main results
2.1 Introduction to the problem

Implementing a single correctable logical qubit requires a physical system with a
large state space. It should accommodate the code subspace and its redundant
replicas where the logical information will be displaced without distortion when
physical errors occur [69]. This redundancy is inextricably associatedwith an addi‑
tional operational cost of QEC, known as the control overhead. In the search for an
efficient way to alleviate its detrimental effects, bosonic codes [31–34] based on the
state space of a harmonic oscillator have been proposed as a promising alternative
to the standard approach based on registers of physical qubits [1, 2, 5]. In hybrid
architectures, these two approaches are complementary, with qubit‑register codes
built upon logical qubits dynamically protected with efficient base‑layer bosonic
QEC [70–72].

Although some aspects of QEC have been demonstrated with superconduct‑
ing circuits [16–18, 40–44], trapped ions [54, 73, 74], and spins in solid‑state sys‑
tems [75–77], the control overhead prevents current‑day experiments from getting
to the heart of what QEC promises to achieve – extending the lifetime of quan‑
tum information stored in the system. This extension is quantified by the gain G,
defined as the ratio between the coherence time of an actively error‑corrected log‑
ical qubit and the best passive qubit encoding in the same system. The break‑even
point is reached atG = 1. A bosonic cat‑code experiment [40] managed to achieved
G = 1.1, but with a code that continuously shrinks to the vacuum state. Other ex‑
periments with various bosonic codes [41–43] and qubit‑register codes [16–18, 44]
have achieved G = 0.1− 0.9.

Wedemonstrate full code stabilization and error correctionwith gainG = 2.27±
0.07using theGottesman‑Kitaev‑Preskill (GKP) encoding [31] of a logical qubit into
grid states of an oscillator. The QEC of this code was previously realized in super‑
conducting circuits [42] and trapped ions [54]. In our work, similarly to [42], the
oscillator is an electromagnetic mode of a superconducting cavity whose quantum
state is manipulated using a transmon ancilla, see Fig. 2.1(a). Our system has an
average relaxation and dephasing time of T t

1 = 280µs and T
t

2E = 240µs for the
tantalum‑based transmon [29], and T c

1 = 610µs and T c

2 = 980µs for the high‑purity
aluminum cavity [45]. We implement in this system a “trickle‑down” QEC scheme

11
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based on the proposals in Refs. [53, 54], which includes real‑time classical process‑
ing andmeasurement‑based feedback. We train the QEC circuit parameters in‑situ
with reinforcement learning (RL) [56, 68, 78], ensuring their adaptation to the real
error channels and control imperfections of our system. At peak performance, the
achieved lifetimes of logical Pauli eigenstates are TX = TZ = 2.20 ± 0.03ms and
TY = 1.36 ± 0.03ms, and the logical Pauli error probabilities per QEC cycle are
pY = (4.3 ± 0.4) × 10−4 and pX = pZ = (1.81 ± 0.04) × 10−3. With such low log‑
ical error probabilities, we explore the QEC process on a previously inaccessible
time scale of thousands of cycles, subjecting to scrutiny the standard assumptions
of the theory of QEC, such as the stationarity of error rates and absence of leakage‑
induced correlations. Finally, we perform error‑injection experiments to identify
the major factors limiting logical performance and chart the path towards the next‑
generation logical qubit.

2.2 Engineering error correction

We now explain the principles of our experiment. Its core idea is to realize an ar‑
tificial error‑correcting dissipation that removes the entropy from the system in an
efficient manner by prioritizing the correction of frequent small errors, while not
neglecting rare large errors. This idea is illustrated in Fig. 2.2(a) for a cartoon sys‑
tem in which redundancy is achieved with only 4 orthogonal subspaces in total,
where C0 is the code subspace and C1−C3 are the error subspaces. In this example,
the dissipation scheme #1 is maximally efficient from the perspective of entropy
removal, since it corrects any error in a single step. Such an approach is taken
by all qubit‑register stabilizer codes, where measurement of the stabilizers, syn‑
drome decoding, and recovery, when composed, realize a dissipation channel of
high Kraus rank. Although this approach can also be applied to the oscillator grid
code, see Chapter 2.7, its implementation entails large control overhead, which in
practice might bring more errors than it is designed to correct. By contrast, the
trickle‑down dissipation scheme #2 has the capacity to correct all the same errors,
but it is not able to do so in a single step. Importantly, the most probable small
errors, corresponding to the error space C1, are still corrected in a single step. Ow‑
ing to this simplification, such an approach reduces control overhead in the grid
code, and therefore it was adopted in our work. The continuous‑time version of
approach #2 was also demonstrated for other bosonic codes in [43, 79].

The stabilizer generators of an ideal square grid code are SX
0 = D(lS) and SZ

0 =
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Figure 2.1 | Experimental system. (a) The sample consists of a superconducting
aluminum cavity and a sapphire chip with a transmon circuit, readout resonator
and Purcell filter. The electromagnetic mode of the cavity implements a harmonic
oscillator, and {|g⟩, |e⟩} levels of the transmon are used as ancilla qubit to assist
in oscillator QEC. (b) The sample is cooled in a dilution refrigerator and controlled
withmicrowave and digital electronics. The QEC process is orchestrated by a field‑
programmable gate array (FPGA), and its parameters are optimized in‑situ by a
reinforcement learning agent implemented on a graphics processing unit (GPU). (c)
ExperimentalWigner functions of the Pauli eigenstates of a grid codewith∆ = 0.34
measured after six QEC cycles.
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D(ilS), where lS =
√
2π is the length of a grid unit cell, and D(α) = exp(αa† −

α∗a) is the displacement operator for an oscillator with creation and annihilation
operators a† and a. Logical Pauli operators of the ideal code are defined as XL =√
SX
0 and ZL =

√
SZ
0 . The ideal codewords obey perfect translation symmetry in

phase space and thus contain an infinite amount of energy. The finite‑energy code
is obtained by applying a normalizing envelope operatorN∆ = exp(−∆2a†a) to the
ideal codewords, where ∆ parametrizes the code family that approaches the ideal
code in the ∆ → 0 limit. In phase space, this parameter controls the extent of the
codewords and the squeezing of their probability peaks. Our experimentalWigner
functions of the codewords with∆ = 0.34 are shown in Fig. 2.1(c). The operators of
the finite‑energy code are obtained through the similarity transformation induced
by the envelope operator [53], for example, SX/Z

∆ = N∆S
X/Z
0 N−1

∆ .
To realize an error‑correcting dissipation channelR∆ for the finite‑energy code,

there is at our disposal a single ancilla qubit and a classical controller. In princi‑
ple, with such resources, it is possible to implement arbitrary quantum channels
of Kraus rank 2M by recycling the ancillaM times and using feedback operations
conditioned on the state of the classical M ‑bit memory of the controller [80, 81].
Here, we construct a rank‑4 error correction channel as a composition of two rank‑
2 dissipators R∆ = RX

∆ ◦ RZ
∆ that drive the system towards the +1 eigenspace of

the finite‑energy code stabilizers SX/Z
∆ . A general rank‑2 dissipation can be imple‑

mented as a unitary U∅ that entangles the system with the ancilla qubit, followed
by ancilla projective measurement with outcome b, and a classically‑conditioned
unitary Ub, see Fig. 2.2(b).

In our experiment, any unitary is compiled down to a set of primitive opera‑
tions: qubit rotations around any equatorial axis Rφ(θ) = exp[−i(θ/2)(cosφσx +

sinφσy)] implemented as 32ns Gaussian pulses with spectral corrections [82]; os‑
cillator displacementsD(α) implemented as 40ns Gaussian pulses; relatively slow
conditional rotations CR(θ) = exp(iθσza†a) implemented by simply waiting a cer‑
tain amount of time under the dispersive coupling Hamiltonian Hd/h̄ = χσza

†a/2

with χ = 2π × 46.5 kHz; and virtual oscillator rotations RV (ϑ) = exp(iϑa†a) im‑
plemented dynamically on the field‑programmable gate array (FPGA) in 448ns.
These primitives are used to construct a fast echoed conditional displacement gate
ECD(β) = σxD(σzβ/2) as shown in Fig. 2.2(b), whose speed ∂t|β| = |α|χ is en‑
hanced compared to the native interaction strength χ by a large factor |α| – magni‑
tude of the intermediate displacement in phase space [42, 51].

Both rank‑2 dissipators are then implemented as follows: the unitary U∅ is de‑
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composed as a parametrized circuit consisting of layers of qubit rotationsRφ(θ) and
entangling ECD(β) gates, while the unitary Ub is realized as only a virtual rotation,
see Fig. 2.2(b). The role of Ub is twofold: to implement switching between RX

∆ and
RZ

∆ by changing the quadrature of the oscillator by π/2, and to compensate for a
spurious rotation due to the always‑on dispersive couplingHd. The role of U∅ is to
approximate the mapping of the finite‑energy stabilizer onto the state of the ancilla
together with autonomous back‑action that pushes the state from the error spaces
towards the code space. Several ansätze for decomposition of U∅ were proposed in
Ref. [53]. We adopt a modified version of the so‑called small‑big‑small (SBS) proto‑
col, named to reflect the relative amplitudes of the three conditional displacement
gates that it contains: β⃗ = lS× (i∆2/2, 1, i∆2/2), see Chapter 6.3 for further details.

A single application of the resulting composite dissipator R∆ realizes a QEC
cycle; we refer to applications of constituent dissipators RX/Z

∆ as even/odd cycles. In
our implementation, the duration of a QEC cycle is tc = 2 × 4.924µs, which in‑
cludes execution of unitary gates, ancilla measurements, and real‑time processing
and decision making by the controller.

2.3 Learning QEC circuit parameters

While the SBS ansatz and gate calibrations lead to a functioning QEC process, the
highest level of performance cannot be achieved with a crude model of the sys‑
tem based on a few independently calibrated parameters – any such model will in‑
evitably contain unrealistic assumptions. Some model inaccuracies and unknown
control imperfections can be compensated by closed‑loop optimization with direct
feedback from the experimental setup. Previously, pulse‑level optimization was
successfully utilized to improve gate fidelities [83–86], but it was never applied to
enhance the performance of QEC. Here, for the first time, we apply a real‑time rein‑
forcement learning agent to this task, as illustrated in Fig. 2.1(b). We use the proxi‑
mal policy optimization (PPO) algorithm [56, 78], which was shown in simulations
to outperform other approaches on high‑dimensional problems with stochastic ob‑
jective that arise in quantum control [55]. We parametrize the QEC circuit with
P = 45 parameters that include the amplitudes of various primitive pulses in the
circuit decomposition, parameters of the ancilla reset, etc.

The training episodes begin with dissipative pre‑cooling of the oscillator fol‑
lowed by feedback cooling to prepare the system ground state |g⟩|0⟩, see Chap‑
ter 2.7. Then, a logical Pauli eigenstate |+X⟩ or |+Z⟩ is initialized with a method
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Figure 2.2 | QEC implementation and optimization. (a) Cartoon comparison of
error‑correcting dissipation channels. The standard dissipation #1 corrects any er‑
ror in a single step, while the “trickle‑down” dissipation #2 can be viewed as direc‑
tional hopping between error spaces that eventually brings the quantum state to
the code space C0. The colors of the arrows correspond to unique Kraus operators,
whose number is equal to the channel rank. Higher‑rank dissipation removes en‑
tropy more efficiently, but incurs larger control overhead. (b) Implementation of a
general rank‑2 channel on the oscillator using a single ancilla qubit. The unitary U∅
is approximated as a parametrized circuit consisting of N layers of qubit rotations
and oscillator conditional displacements. Each conditional displacement gate uti‑
lizes a large intermediate displacement of magnitude |α| to enhance the gate speed.
(c) Evolution of reward of the RL agent during the training. The black triangle in‑
dicates the start performance based on independent calibrations. Expectations of
Pauli operators are taken in their respective eigenstates and include SPAM errors.
(d) One realization of the learning trajectory of the intermediate photon number
used to execute the big conditional displacement gate (“B” in the SBS circuit). Light
blue shade shows the variance of the sampled parameter values during the training
and dark blue line shows the mean.
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from [51], and a candidate QEC protocol is run for T = 160 cycles. We chose this
duration to enhance the signal‑to‑noise ratio of the reward, similar to the technique
used to sample randomized benchmarking cost functions [83–86]. At the end of the
episode, the reward for the RL agent is obtained by measuring the logical Pauli op‑
erator XL or ZL (depending on the initial state), which provides a proxy for the
logical lifetime. This logical measurement is done with one‑bit phase estimation
of the ideal‑code Pauli operators [42, 87], and its fidelity is intrinsically limited to
(1 + e−π∆2/4)/2 [72]. Although there exist methods of logical readout adapted to
the finite code envelope [53, 54, 88], we use the phase estimation method to avoid
biasing the RL agent towards a particular finite envelope size and to let it pick the
optimal size given the error channels of our system.

By construction, the reward incentivizes the RL agent to find a QEC protocol
that leads to the longest logical qubit lifetime. The typical evolution of the average
reward during the training is shown in Fig. 2.2(c). The performance level indi‑
cated with a black triangle is achieved with independent calibrations of the system
and control parameters, see Chapter 4. The RL agent significantly improves upon
this baseline performance in two stages: in the first hundred training epochs, the
agent corrects large errors in the initial parameter values, and in the subsequent
few hundreds of epochs, it fine‑tunes the circuit parameters to achieve the highest
performance.

Several trends in the learning trajectories highlight the benefits of the model‑
free RL approach; we elucidate them in more detail in the Chapter 6.4. Here, we
only highlight a single illustrative example. In our implementation of the ECD
gate, there exists a nontrivial tradeoff between coherent and incoherent errors: the
gate can be implemented faster by displacing the oscillator further in phase space,
i.e., populating it with more intermediate photons, but this makes the gate more
susceptible to high‑order nonlinear effects [51]. Moreover, some choices of this
intermediate photon number can result in a Stark shift of the ancilla into resonance
with a spurious degree of freedom, e.g., a two‑level defect [89, 90]. How these
tradeoffs translate into logical qubit performance is difficult to model, but the RL
agent can learn the optimal value of the large intermediate displacement without a
model. As shown in Fig. 2.2(d), it chose to reduce the intermediate photon number,
improving the performance of QEC at the cost of a much slower gate.
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Figure 2.3 | System coherence. (a−c) For each qubit, we initialize Pauli eigenstates,
let them evolve freely or under QEC for a variable amount of time, andmeasure the
respective Pauli operators. The data for {|g⟩, |e⟩} and {|0⟩, |1⟩} qubits is fitted to am‑
plitude damping and white‑noise dephasing channel, and data for error‑corrected
GKP qubit is fitted to a Pauli channel. In (c), the | + X⟩ data is symmetrically re‑
flected with respect to 0 for better visibility. Empty circles represent evolution in
absence of QEC, when grid states decay towards vacuum. (d) Lifetime of average
channel fidelity for these three qubits.

2.4 Observing QEC beyond break‑even

After the training is finished, we pick the best performing QEC circuit for further
characterization. Here, we focus on the ability of QEC to create a good quantum
memory, i.e. to convert the effect of passage of time into an identity channel I :

ρ→ ρ that preserves all qubit states.
A metric quantifying the deviation of any quantum channel E : ρ → E(ρ) from

the identity is the average channel fidelity, F [E ] =
∫
dψ⟨ψ|E(|ψ⟩⟨ψ|)|ψ⟩, where the

integral is over the uniform measure on the qubit state space, normalized so that∫
dψ = 1. In general, this fidelity decays over time in a nontrivial way, but to lead‑

ing order it evolves as F(t) ≈ 1 − 1
2
Γ t, where the decay rate Γ is equivalent to
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an average decoherence rate of all pure states on the qubit Bloch sphere. Conve‑
niently, it suffices to average across the six Pauli eigenstates alone [91], leading to
an experimental procedure for extracting Γ that can be applied to any kind of qubit
irrespective of its error channel. In Fig. 2.3, we show the results of such an exper‑
iment, conducted for three different qubit encodings in our system: the {|g⟩, |e⟩}
subspace of the transmon, the {|0⟩, |1⟩} subspace of the oscillator, and grid code of
the oscillator (with and without QEC).

Both the {|0⟩, |1⟩} and {|g⟩, |e⟩} qubits are subject to amplitude damping and
white‑noise dephasing channels, captured by their respective T1 and T2 times, with
fidelity decay constant given by Γ = (1/T1 + 2/T2)/3. From the perspective of a
quantum memory, the best uncorrectable physical qubit in our system is {|0⟩, |1⟩},
shown in Fig. 2.3(b), which achieves Γ{01} = (800µs)−1. The {|g⟩, |e⟩} qubit, shown
for completeness in Fig. 2.3(a), only achieves Γ{ge} = (250µs)−1.

Higher excited states of the oscillator have shorter lifetime due to bosonic en‑
hancement of spontaneous emission. Therefore, as with any QEC code, encoding
a qubit using grid states incurs an immediate penalty in the fidelity decay rate.
Moreover, this natural decay, shown in Fig. 2.3(c) with empty circles, takes the
grid states outside the logical manifold and eventually towards the vacuum state
|0⟩.

Our error correcting dissipation stabilizes the grid code manifold and, together
with naturally occurring dissipation, leads to a logical Pauli channel within this
manifold, with the lifetimes of logical Pauli eigenstates of TX = TZ = 2.20±0.03ms
and TY = 1.36 ± 0.03ms. Under the Pauli channel, the fidelity decay constant
is given by Γ = (1/TX + 1/TY + 1/TZ)/3, which in our experiment amounts to
ΓGKP = (1.82ms)−1.

The principal metric characterizing the quality of QEC from the perspective of
quantummemory is the coherence gain of an actively error‑corrected logical qubit
over the best passive qubit encoding. In our experiment, the highest achieved gain
is G = Γ{01}/ΓGKP = 2.27± 0.07, confidently beyond break‑even.

2.5 QEC process characterization

Having characterized the logical qubit as a quantummemory, we next examine the
properties of the QEC process. Ancilla measurement outcomes, referred to as syn‑
dromes, inform us which stochastic path the QEC process has taken in each cycle.
In Fig. 2.4(a) we show a (statistically unrepresentative) sample of these outcomes
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Figure 2.4 | Analysis of error syndromes. (a) A sample of ancilla measurement
outcomes during QEC. The e outcome (yellow) indicates correction of physical er‑
rors. The black arrow points to a syndrome string of the type eg/eg/... likely left
by a large error in one oscillator quadrature. Red indicates transmon leakage out
of the {|g⟩, |e⟩} qubit subspace. (b) Average probability of each measurement out‑
come as a function of time. After correcting state initialization errors, QEC settles
into a steady state that persists for at least a hundred thousand cycles. (c) Probabil‑
ity of e outcome as a function of time after injecting position displacement errors of
varying amplitude. Since a logical gate in the ideal code comprises a displacement
of amplitude lS/2, a displacement of amplitude lS/4 makes a large‑distance error,
which takes several cycles to correct with our low‑rank QEC channel. (d) Decay
of Pauli eigenstates after eliminating by post‑selection the experimental shots with
strings of ≥ d consecutive e outcomes in the same‑quadrature cycles. Data for XL

eigenstates is not shown; it is expected to behave similarly to ZL. The improve‑
ment in lifetime indicates that e outcomes are indeed correlated with occurrence of
errors. NP in the legend stands for “no post‑selection”.
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that comprise trajectories of different experimental shots. Such a dataset contains
an immense amount of information about the QEC process, not available in previ‑
ous experiments with the grid code QEC [42, 54].

To interpret this dataset, we adopt here a simplified model of trickle‑down dis‑
sipation such as depicted in Fig. 2.2(a), which captures the essence of our QEC
process. The caveats of this model and the exact Kraus decomposition of our QEC
circuit are provided in Chapter 6.2. In this simplified model, the g outcome indi‑
cates that the state was projected onto the code space, while an e outcome indicates
that the state was transferred one level down the error hierarchy, partially or com‑
pletely correcting an error.

From the dataset in Fig. 2.4(a), we observe that the vastmajority of outcomes are
g (green), which means that errors are rare. The stochastic pattern of e outcomes
(yellow) reflects randomly occurring errors. Most errors are small and, when cor‑
rected, leave single isolated e outcomes. An example syndrome string likely gen‑
erated by a large error in one quadrature is indicated with an arrow: it has a char‑
acteristic eg/eg/... pattern. We also observe isolated ancilla leakage events (red).
Leakage to |f⟩ is reset in the same cycle with high probability. Sometimes, leakage
persists for multiple cycles (streak of red), due to the transmon escaping to a state
higher than |f⟩, which is not addressed in our reset scheme.

The average probability of each outcome as a function of time is shownFig. 2.4(b),
where the process starts from a | + X⟩ state. After about 10 cycles of initial state
correction, the process settles into a dynamical equilibrium which persists for at
least a hundred thousand cycles (the longest measured here) without any notable
increase of the error rates over time. Detailed analysis reveals that the QEC process
is nearly stationary, with residual deviations from stationarity caused by the trans‑
mon leakage to states higher than |f⟩ at a rate 1.3× 10−4 per cycle, see Chapter 6.6.

In this dynamical equilibrium, physical errors excite the quantum state out of
the code space with probability perr = 0.13± 0.02 per QEC cycle, as deduced from
the statistics of syndrome outcomes. The competition between physical errors and
error‑correcting dissipation results in a “thermal” distribution across the subspaces
with probability ⟨Π0⟩ = 0.82 ± 0.02 of occupying the code space, see Chapter 2.7.
Having perr ≪ 1 justifies the use of low‑rank error‑correcting dissipation in our sys‑
tem, which is sufficient to prevent physical errors from accumulating and causing
logical errors. At the highest achieved QEC gain, the logical Pauli error probabili‑
ties per QEC cycle are pY = (4.3± 0.4)× 10−4 and pX = pZ = (1.81± 0.04)× 10−3.
By comparing the total logical error probability, pX + pY + pZ , to the physical error
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probability perr, we conclude that 97% of the errors are successfully corrected by
our process.

Since rare large errors require several cycles to be corrected, the QEC process is
weakly time‑correlated with a correlation length of 3.9±0.1 cycles, see Chapter 6.6.
To understand these correlations, in Fig. 2.4(c) we inject displacement errors along
the position quadrature andmonitor the syndromes that they produce as a function
of time. Such errors leave traces of e outcomes in proportion to their distance to the
closest logical operation. For example, a displacement of length 0, equivalent to a
logical identity, leaves no syndrome trace; a displacement of length lS/2 is close to a
logical bit‑flip of the finite‑energy code, and hence it leaves only a small syndrome
trace; on the other hand, a midway displacement of length lS/4 makes a large‑
distance error which takes the longest time to correct with a low‑rank dissipator,
generating a lasting trace of e outcomes.

This displacement error injection experiment confirms that errors indeed gen‑
erate the e syndromes, but do these syndromes herald the occurrence of errors? To
verify this, we perform post‑selection of trajectories with different syndrome pat‑
terns. In particular, we discard trajectories that have≥ d consecutive e outcomes in
the same‑quadrature cycles, with resulting post‑selected decay of Pauli eigenstates
shown in Fig. 2.4(d). In the case d = 5, post‑selection eliminates rare large‑distance
errors and improves the fidelity lifetime only by a factor 1.2, but at the cost of re‑
jection probability of 7 × 10−4 per cycle. On the other hand, in the case d = 1,
post‑selection eliminates relatively frequent small errors that are close to identity,
as well as rare large uncorrectable errors that are close to a logical operation. It is
because of the latter that the fidelity lifetime in this setting improves by a factor
6.3, but with a more severe rejection probability of 6× 10−2 per cycle. These favor‑
able post‑selection results indicate that such a method can be used for probabilistic
preparation of high‑fidelity logical states, including the magic states required for
universal quantum computing [92], which is left for future investigation.

2.6 Conclusion and outlook

In this work, we used real‑time error correction to realize a fully stabilized logical
qubit whose lifetime is more than doubled compared to the best passive qubit en‑
coding in the system, marking the transition of QEC from proof‑of‑principle stud‑
ies to a practical tool for enhancing quantummemories. Our work improves upon
previous QEC experiments, which do not protect the logical identity operator IL
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[40], protect only one of the logical Pauli operatorsXL or ZL[79, 93, 94], implement
correction in post‑processing [16–18], require post‑selection [95], and do not reach
break‑even [16–18, 41–43]. Instrumental for this achievement, among other factors,
was the adoption of a model‑free learning framework, improved fabrication tech‑
nique for the ancilla transmon, and a novel grid‑code QEC protocol.

Performing additional experiments, we identified the core challenges that need
to be addressed to ensure future progress of grid‑codeQEC. In particular, by study‑
ing long‑time system stability, we found that occasional collapses of the logical per‑
formance are strongly correlated with appearance of spurious degrees of freedom
in the system. Their resonant interaction with the Stark‑shifted transmon ancilla
degrades the fidelity of our operations, see Chapter 6.10. In the short term, this
effect could be mitigated by adopting a tunable ancilla and periodically re‑training
the QEC circuit to find better spectral locations. In the long term, the behavior of
these defects needs to be understood, as they pose even greater danger for scaled‑
up quantum devices [16–18].

In addition, we expect that considerable enhancement can be gained by tailor‑
ing theQEC process not only to error channels of the oscillator, but also those of the
ancilla. Our QEC circuit is fault‑tolerant with respect to ancilla phase‑flip errors by
design [53]. With the transmon ancilla used here, the sensitivity of the logical life‑
time to ancilla phase flips is 65 times smaller than to ancilla bit flips, as found with
noise injection experiments, see Chapter 6.9. Future development should incorpo‑
rate robustness against ancilla bit flips, either through path‑independent control
[47, 96] or by adopting a biased‑noise ancilla [97].

2.7 Additional information

QEC of the ideal grid code

To understand error correcting properties of the ideal code, consider an error chan‑
nel E decomposed in the displacement basis. An ideal grid code with code projec‑
tor Π0 satisfies Knill‑Laflamme conditions [69] Π0D

†(εα)D(εβ)Π0 ∝ δ(εα − εβ)Π0

for all errors in a correctable set E+ = {D(ε) : |Re(ε)|, |Im(ε)| < lS/4}. A dis‑
placement error of amplitude ε creates an error state |ψε⟩ = D(ε)|ψ⟩, where |ψ⟩ is
any state from the code space. Since a displaced grid state is still translationally
invariant, it remains an eigenstate of the ideal code stabilizers, and the phase of
its eigenvalue encodes a continuous error syndrome: SZ

0 |ψε⟩ = exp(2ilSRe[ε])|ψε⟩
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and SX
0 |ψε⟩ = exp(−2ilSIm[ε])|ψε⟩. Error correction of an ideal grid code can be

done in a similar manner to any stabilizer code: first, measure the stabilizers to ob‑
tain the error syndrome, which here corresponds to phase estimation of SX/Z

0 that
yields the error amplitude ε. This step projects the state onto one of the orthogo‑
nal error spaces. Then, apply the recovery operation, here a simple displacement
D(−ε), to correct the error. Such procedure realizes an artificial dissipation R of
an infinite rank which corrects any error from E+ in a single cycle, (R ◦ E)(ρ) ∝ ρ,
analogously to the cartoon high‑rank dissipation in Fig. 2.2(a). In contrast to this
approach, our experiment realizes low‑rank dissipation that asymptotically satis‑
fies ([R]n→∞ ◦ E)(ρ) ∝ ρ.

Dissipative cooling to vacuum

We utilize the dissipation engineering framework [98] to design fast cooling of
the oscillator to vacuum state |0⟩ in the weak‑coupling regime where previous
known cooling methods [99] fail; we also expect this novel method to be appli‑
cable to cooling of trapped ions [54]. Similarly to error‑correcting dissipation, we
realize this cooling as a composition of two rank‑2 channels that shrink the os‑
cillator state in the orthogonal quadratures. The unitary U∅ in this case is real‑
ized as a three‑layer circuit obtained from first‑order Trotter decomposition of U =

exp[−iε(aσ++a†σ−)], where ε≪ 1 controls the cooling rate. This unitary swaps the
excitations of the oscillator into the ancilla, which is reset in every cycle. The dura‑
tion of one full cooling cycle (including both quadratures) is tc = 2× 3.38us. With
ε = 0.4, we achieve cooling at a rate 20 times faster than natural energy damping
rate of the oscillator. In our experiment, 25 full cycles of such a dissipative cooling
are then followed with a feedback cooling protocol adapted from [40] to remove
any residual thermal population. See Chapter 4.6 for more details.

Reinforcement learning implementation

The QEC circuit is parametrized with a vector p⃗. Instead of optimizing p⃗ directly,
the RL agent learns parameters of the probability distribution from which p⃗ is
stochastically sampled during the training to ensure adequate exploration of pa‑
rameter space. To this end, we use a factorized multivariate Gaussian distribu‑
tion N (µ⃗, σ⃗) with mean µ⃗ and covariance matrix diag[σ⃗]2. To capture the pattern
of relations between different components of p⃗, the mean and covariance are rep‑
resented as parametrized functions µ⃗(θ) and σ⃗(θ) of common hidden variables θ.
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In this work, µ⃗ and σ⃗ are produced at the output of a neural network with two
fully connected layers of 50 and 20 rectifier linear unit (ReLU) neurons. Starting
with initial vector of parameters µ⃗i found with independent calibrations, during
the course of learning the agent gradually deforms the distribution and localizes it
on the new vector µ⃗f , the final result of the optimization. Typically, as it proceeds,
the agent also reduces the covariance of the distribution to have a finer control over
the mean. These features of learning are observed in the example evolution of one
component of p⃗ in Fig. 2.2(d). During one training epoch, we evaluate 10 QEC
circuit candidates with 300 episodes (i.e. experimental shots) per candidate. The
collected information is used to update the neural network parameters θ according
to the PPO algorithm, which completes the epoch. One epoch takes approximately
16 seconds, with the majority of time spent on re‑compilation of FPGA instruction
sequences and its re‑initialization. See Chapter 5.2 for more details.

Steady state of the QEC process

We perform Wigner tomography of the logical states after varying duration of the
QEC process, reconstruct the density matrix, and from its spectral decomposition
extract the expectation value of the code projector ⟨Π0⟩ = 0.825±0.003, where error
bar represents the standard deviation with respect to different process durations
of 100, 200, 400, and 800 cycles. In addition to the code space, only one error space
is occupied in the steady state with an appreciable probability of 0.170±0.005. The
logical decoherence within this error space happens at the same rate as within the
code space. For more details, see Chapter 6.8.

The expectation value of the code projector in the steady state can be estimated
independently, using the statistics of syndrome outcomes. Under the approxima‑
tions discussed in Chapter 6.5, the probability that a syndrome string of length 2n

consists only of g outcomes asymptotically approaches ⟨Π0⟩(1−perr)n−1 for large n.
Using thismethod, we extract ⟨Π0⟩ = 0.81±0.02 and perr = 0.13±0.02. The error bar
in this case represents the accuracy of the model for the string probability, which is
valid to first order in perr. The value of ⟨Π0⟩ quoted in the main text is the average
of the two methods. Constructing a detailed error budget of the aggregate error
probability perr based on the system‑level simulation of the known error processes
is an avenue left for future work.
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Experimental setup and sample
This chapter briefly describes how the sample was fabricated and what measures
were taken to isolate it from the environment yet maintain the controllability. The
techniques for sample design, assembly, thermalization, shielding, and wiring of
the control electronics described here, are fairly standard in the field of supercon‑
ducting quantum circuits. The ancilla chip fabrication technique is new (it was re‑
cently introduced in Ref. [29]), and the corresponding Chapter 3.2 was contributed
by my colleague S. Ganjam who fabricated the chip.

3.1 Assembly

Our system design follows the hybrid planar‑3D circuit QED architecture devel‑
oped in [46]. The storage oscillator is realized as an electromagnetic mode hosted
by a seamless superconducting coaxial stub cavity made of high‑purity aluminum
and treated with a chemical etch to improve surface quality. This is the same phys‑
ical cavity as used in [47], although with lower coherence time due to aging during
the storage time of ∼ 2 years. The cavity is anchored to a copper bracket inside a
cryoperm shield. The ancilla chip is inserted in a tunnel waveguide that connects
to the storage cavity, and is secured at one end with a copper clamp. Thermalizing
copper braids run from the clamp to the base plate of the dilution refrigerator, see
Fig. 3.1.

Figure 3.1 | Sample assembly. (a) Clamped ancilla chip. (b) Thermalization. (c)
Shielding.

26
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3.2 Ancilla chip fabrication

The ancilla chip contains a transmon qubit, a stripline readout resonator, and a
stripline bandpass Purcell filter. The resonators and transmon are tantalum‑based
devices, with Josephson junction of the transmon made of a small aluminum sec‑
tion; they are fabricated with a process similar to [29]. Adopting a tantalum‑based
platform results in improved qubit coherence relative to an all‑aluminumplatform;
however, the reasons for this are still under active investigation. Possible expla‑
nations include, but are not limited to: 1) The corrosion resistance allows for the
use of rigorous acid‑based cleaning techniques to be employed during the fabrica‑
tion process that improves surface dielectric quality and minimizes the presence
of organic residues; 2) The high melting point of tantalum allows for deposition
to occur at higher temperatures, where atomic mobility is high enough to enable
epitaxial film growth with a high degree of crystalline order; 3) Tantalum has a
higher superconducting transition temperature than aluminum, which may lead
to increased resistance to quasiparticle loss.

We use a C‑plane sapphire wafer produced using the heat exchanger method
(HEM), as it was shown to have smaller dielectric loss [100]. The wafer was ini‑
tially cleaned with a piranha solution (2 : 1 H2SO4 : H2O2) for 20 minutes and
rinsed with DI water. The wafer was then annealed at 1200 ◦C in an oxygen‑rich
environment for 1 hour. After cooling down to room temperature, the wafer was
immediately transferred to a sputtering system for tantalum deposition. 150nm
of tantalum was deposited by DC magnetron sputtering with the substrate tem‑
perature being held at 800 ◦C. The Purcell filter, readout resonator, and transmon
pads were subtractively patterned using a positive photoresist mask and reactive
ion etching. After tantalum patterning, the Josephson junction was patterned us‑
ing electron‑beam lithography and defined using the Dolan bridge method. The
junction was deposited using electron‑beam evaporation of aluminum at 2 angles
with an interleaved static oxidation step to construct the tunnel barrier. Liftoff was
performed in NMP heated to 90 ◦C, followed by sonication in acetone, isopropanol,
and DI water. Finally, the wafer was protected with a layer of photoresist before
dicing into individual chips, followed by additional cleaning with NMP, acetone,
and isopropanol to remove the protective photoresist.
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Cavity mode

Frequency ωc = 2π × 4.479GHz
1st order dispersive shift χ = 2π × 46.5 kHz
2nd order dispersive shift χ′ = 2π × 5.8Hz
Kerr nonlinearity K = −2π × 4.8Hz
Relaxation T

c

1 = 606± 10us
Dephasing T

c

2 = 980± 30us

Ancilla transmon

Frequency ωt = 2π × 5.921GHz
Anharmonicity α = −2π × 222MHz
Relaxation T

t

1 = 280± 30us
Equilibrium population n t

th = 0.043± 0.008

Dephasing (Ramsey) T
t

2R = 62± 5us
Dephasing (Echo) T

t

2E = 238± 8us

Readout resonator

Frequency ωr = 2π × 9.107GHz
Dispersive shift χqr = 2π × 0.60MHz
Coupling strength κr(c) = 2π × 0.47MHz
Internal loss κr(i) = 2π × 0.03MHz

Table 3.1 | Measured system parameters. For transmon parameters (T t

1, T
t

2R, T
t

2E ,
nt
th) and cavity parameters (T c

1 , T
c

2 ) that appreciably fluctuate in time, we provide
the mean and standard deviation over a week‑long period. The definition of the
Hamiltonian parameters can be found in Chapter 4.2.

3.3 System parameters

The measured parameters of this system are summarized in Table 3.1.

3.4 Control wiring

As shown in Fig. 3.2, the quantum system is controlled by a computer (VPXI‑ePC)
that hosts two control cards (X6‑1000M) from Innovative Integration. Each card
integrates digital‑to‑analog converters (DAC), analog‑to‑digital converters (ADC),
digital inputs and outputs (DIO), and a Xilinx VIRTEX‑6 field‑programmable gate
array (FPGA). This controller was developed in [40] and used in prior bosonic QEC
experiments [40, 41]. The baseband control signals are sampled from the DACs at
500MS/s rate with 16‑bit resolution and upconverted to the oscillator, qubit, and
readout frequencies through single‑sideband modulation of the local oscillators
(Agilent N5183A). After amplification, the signals are gated with fast RF switches
(9ns rise time, 5ns fall time) and filtered before entering the dilution refrigera‑
tor. The signals are further attenuated and filtered in the cryogenic environment.
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A crucial component of the filtering is the eccosorb CR‑110 infrared absorber fil‑
ter [101] located inside the cryoperm shield, and the copper plate, painted with
stycast epoxy mixed with black carbon powder, that wraps around the sample.
On the output side, the reflected readout signal is amplified at 30mK stage with a
near‑quantum‑limited Josephson array‑mode parametric amplifier (JAMPA) [55],
followed at 4K stage by a low‑noise HEMT amplifier. Upon further amplification
at 300K stage and down‑conversion to 50MHz, the readout signal is digitized, de‑
modulated, and integrated with a filter function to obtain I and Q quadratures.
Their values are compared to the decision boundaries Ith andQth to obtain two bits
of information s0 = Θ(I − Ith) and s1 = Θ(Q−Qth), where Θ is the Heaviside step
function. This allows to classify the measurement outcome as ‘‘g” if s0 = 0, ‘‘e” if
(s0, s1) = (1, 0), and ‘‘f” if (s0, s1) = (1, 1). The bits s0 and s1 are redistributed to all
control cards which run independent but synchronized control flows that include
conditional branching on these bits. Further details of the readout subroutine are
described in Chapter 4.3.
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Figure 3.2 | Experimental setup. For simplicity, the diagram omits DC ground
connections of all active components, and attenuators placed at different locations
at 300K stage to ensure power levels within specs for amplifiers and switches.



4
Calibration and characterization
This chapter describes basic system calibration and characterization techniques.
The calibrations of the primitive pulses and of the readout, described in Chap‑
ters 4.1,4.3, are well‑known and widely used throughout the superconducting cir‑
cuits community. The calibrations of the Hamiltonian parameters, described in
Chapter 4.2, rely on a mix of established techniques in the strong‑coupling regime
of circuitQED, and relatively newmethods developed for theweak‑coupling regime
in Refs. [42, 51]. The calibration of the ECD gate, described in Chapter 4.4, is also
based on these works, with certain modifications related to the training of the gate
parameters. The novel method of dissipative oscillator cooling, described in Chap‑
ter 4.6, was theoretically proposed by my colleague B. Royer, first tested in an ex‑
periment by B. Brock, and its improved version was adopted for the present exper‑
iment and is published here for the first time.

4.1 Primitive pulses

Qubit rotation

The waveform for transmon g ↔ e and e↔ f rotations is a Gaussian with σ = 8ns
and symmetric chop at 2σ. The pulse amplitude is calibrated with a standard am‑
plitude Rabi experiment, shown in Fig. 4.1(a). We find that finite negative detuning
of a few MHz is needed to maximize the Rabi contrast in both cases. In a similar
manner, we calibrate a selective square pulse of duration 2π/χ ≈ 22µs that per‑
forms g ↔ e rotations conditioned on the oscillator in |0⟩.

Oscillator displacement

The waveform for oscillator displacements is a Gaussian with σ = 10ns and sym‑
metric chop at 2σ. It is calibrated in several steps, refining the accuracy at each
step. First, before the precise value of χ is known, we use a rough calibration by
creating a coherent state of unknown amplitude α and measuring the probabil‑
ity of |0⟩ via a selective qubit pulse, with the results shown in Fig. 4.1(b). Fitting
the data to P (0) = e−|α|2 allows us to calibrate the DAC amplitude for displace‑
ment of |α| = 1. This first‑stage calibration enables us to use active oscillator cool‑
ing, see Chapter 4.6, which is important for the next calibration step that relies on

31
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a vacuum state. Next, after determining the value of χ (using number‑resolved
qubit spectroscopy, see Chapter 4.2), we measure the Wigner function of vacuum
W (α) = (2/π)e−2|α|2 and adjust the DAC amplitude calibration to obtain the vari‑
ance of 1/4, with the results shown in Fig. 4.1(c). We find that these two calibrations
typically agree within 2%.

Figure 4.1 | Calibration of primitive pulses. (a) Amplitude Rabi experiment to
calibrate qubit rotations. (b) First‑step calibration of displacement: probability of
|0⟩ in a coherent state, P (0) = e−|α|2 . (c) Second‑step calibration of displacement:
Wigner function of vacuum,W (α) = (2/π)e−2|α|2 .

4.2 Hamiltonian parameters

Our system is well described with the following Hamiltonian

H/h̄ = ∆(a†a) +
1

2
χ (a†a) σz +

1

2
K (a†a)2 +

1

4
χ′ (a†a)2 σz, (4.1)

where ∆ is the oscillator frequency detuning in the chosen rotating frame, χ is the
dispersive shift, χ′ is the second‑order dispersive shift, and K is the Kerr nonlin‑
earity.

We calibrate χ with number‑resolved qubit spectroscopy [102] in the presence
of a coherent state of small amplitude α ≈ 0.6 in the oscillator. The spectroscopy
data, shown in Fig. 4.2(a) in red, is fitted to a 5‑component equal‑spacingmixture of
the spectroscopy lineshapeswith the oscillator in vacuum, shown in blue, which re‑
sults in χ = 46.6 kHz. After additionally performing the cavity mode spectroscopy
(data not shown), we set the LO frequency towork in the rotating framewith∆ = 0.

After calibrating the displacement amplitude, as described in Chapter 4.1, we
perform an out‑and‑back experiment [51] to determine the higher order nonlinear‑
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Figure 4.2 | Calibration of Hamiltonian parameters. (a) Number‑resolved qubit
spectroscopy with a selective square pulse of duration ∼ 50µs when the oscillator
is in the vacuum state (blue) and a coherent state (red). (b) Optimal return phase
in the out‑and‑back experiment (inset) with the qubit in |g⟩ and |e⟩. As seen from
the phase dispersion with n, the effective oscillator nonlinearity is larger when the
qubit is in |e⟩. (c) Average oscillator rotation frequency (ωg + ωe)/2, and a linear fit
to extract ∆ and K. (d) Relative oscillator rotation frequency ωg − ωe, and a linear
fit to extract χ and χ′. The star indicates χ obtained in (a).
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ities K and χ′. In this experiment, shown in the inset of Fig. 4.2(b), we create a
coherent state |α⟩with an average number of n = |α|2 photons, wait for some time
while it rotates in phase space, and attempt to return it back to the origin with a
displacement of variable phase. The optimal return phase for qubit in |g⟩ and |e⟩
is shown in Fig. 4.2(b). Performing this experiment for different wait times allows
to extract the effective oscillator rotation frequencies ωg(n) and ωe(n). The linear fit
of the average rotation frequency (ωg + ωe)/2 = ∆ + K n yields the values of the
detuning ∆ and Kerr nonlinearity K, as shown in Fig. 4.2(c). The linear fit of the
relative rotation frequency ωg−ωe = χ+χ′ n yields the values of the dispersive shift
χ and the second‑order dispersive shift χ′, as shown in Fig. 4.2(d). We find that the
value of χ predicted with this method typically agrees with the value obtained via
number‑resolved spectroscopy to within 1%.

4.3 Readout and reset

The transmon measurement consists of a readout pulse of duration 700ns with
40ns ramp‑up and ramp‑down. The reflected microwave signal is acquired (after
300ns delay to account for signal travel time) for the duration of 1400ns. After
acquiring the readout signal, FPGA performs digital signal processing, which con‑
sists of demodulation, integration of the signalwith a filter function, and threshold‑
ing, all of which takes 332ns. Next, the bits s0 and s1 that encode the measurement
outcome are distributed to all control cards, which takes 100ns. For a schematic
of this measurement process, see Fig. 4.3(a). When the readout is used to realize
ancilla reset, additional time is spent on branching on the s0 and s1 signals to apply
appropriate feedback pulses. The branching is done as shown in Fig. 4.6(a), taking
additional 200ns to complete the reset. Due to the slow ringdown of the readout
photons on a time scale of 1/(κr(c)+κr(i)) ≈ 320ns, the readout resonator is not fully
empty when the feedback pulses are applied, partly limiting their fidelity through
measurement‑induced dephasing mechanism [103]. This limitation could be ad‑
dressed in the future by using a strongly coupled readout resonator with photon
lifetime on the order of ten nanoseconds [104], or, alternatively, by using an active
resonator depletion protocol [105] as was done in the grid‑code experiment [42].

To characterize the readout, we perform a two‑measurement experiment in
which the ancilla state is prepared with post‑selection on the outcome of the first
measurement [106]. The second measurement follows with a 500ns delay after the
first one. Its outcome is histogrammed, as shown in Fig. 4.3(b) for |g⟩, |e⟩ and |f⟩
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Figure 4.3 | Ancilla measurement. (a) Timing of different components of readout
and reset. (b) Logarithmic histogram of the integrated readout signal for different
transmon initial states. (c) Markov transition matrix derived from the histogram
in (b). It shows the probability of transition from any initial state to any final state
during the measurement. (d) Time trace of |e⟩‑state lifetime (color coded). The
resonator field amplitude in the steady state is proportional to the DAC amplitude
(horizontal axis). The amplitude used for the actual readout corresponds to

√
n =

0.22. When spurious resonance around
√
n = 0.1 reappears, the readout fidelity

significantly reduces.
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initial states. The SNR of our readout is large enough to not be a dominant cause of
the readout infidelity. Instead, the fidelity is limited by state transitions during the
finite readout time. Some transitions are expected due to the finite lifetime of the
ancilla excited states, and the excess is induced by the readout pulse itself [107].

The Markov matrix in Fig. 4.3(c) describes the transition probabilities in this
characterization experiment. It is obtained by integrating the parts of a histogram
on various sides of two thresholds. The diagonal elements of this matrix can be in‑
terpreted as readout fidelities of different transmon states, with precision of about
∼ 10−3 for |e⟩ and |f⟩ states due to possible decay during the 500ns delay between
the two measurements. The readout fidelity of the ground state F (g)

r = 0.9997 is
significantly better than that of the excited stateF (e)

r = 0.9914 – a crucial feature ex‑
ploited in our QEC protocol, where the dominant “no error” syndrome is mapped
to the g outcome

The readout fidelity of |g⟩ is also more stable over time, see Chapter 6.10. The
readout fidelity of |e⟩ fluctuates over time due to fluctuations of T t

1 (n) (qubit life‑
time in the presence of n readout photons). A sample drift of T t

1 (n) is shown in
Fig. 4.3(d). The exact reason for this effect is still not well understood. It is possible
that the dependence T t

1 (n) comes from drive‑induced hybridization of the trans‑
mon energy levels [108]. Higher levels are sensitive to offset charge, and thus fluc‑
tuations of environmental charges can affect the hybridization strength and lead
to fluctuations of T t

1 (n). Another possible explanation is that fluctuating T t
1 (n) de‑

pendence comes from a spectral overlap of the Stark‑shifted qubit frequency with
a spurious degree of freedom (not necessarily charged), e.g. a two‑level defect,
which itself fluctuates [89]. The correlation between the logical qubit performance,
the readout infidelity of |e⟩ state, and the fluctuating T t

1 (n) is further discussed in
Chapter 6.10.

4.4 Conditional displacement

We create an echoed conditional displacement gate ECD(β) = σxD(σz β/2) using
the approach described in Ref. [51]. As illustrated in Fig. 4.4(a), this gate consists
of the following steps: (i) the oscillator is displaced out in phase space by large
amplitude α; (ii) the conditional rotation is accumulated during the time interval τ
along the arc of a large radius |α| – this is equivalent to accumulation of the condi‑
tional displacement in the direction orthogonal to α at an enhanced rate χ|α|; (iii)
the oscillator is returned back towards the origin of phase space with displacement
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of amplitude −α cos(χτ/2); (iv) the qubit state is flipped with an echo π‑pulse; (v)
an analogous large displacement sequence is repeated in the symmetrically oppo‑
site direction in phase space. Under the dispersive coupling model and in the limit
of instantaneous rotation and displacement pulses, this protocol results in a net
conditional displacement of amplitude β = −2iα sin(χτ). Due to deviations from
this idealized scenario, such as finite pulse durations and higher order Hamilto‑
nian terms, we need to experimentally calibrate the amplitude α(β) of the large
displacement required to achieve a desired conditional displacement.

Calibration of amplitude

Starting with qubit in |g⟩ (or |e⟩, with similar results) and oscillator in |0⟩, we apply
the ECDgatewith fixed delay τ in the displaced state and varying amplitudeα, and
then attempt to undo the effect of the gate and return the oscillator to vacuumwith
a simple displacement D(−β/2). This out‑and‑back sequence is repeated N times
to increase the resolution. At the end of the experiment, the qubit is probed with a
selective pulse conditioned on oscillator in |0⟩. The complete sequence is illustrated
in Fig. 4.4(b), and the experimental data for the gate with delay τ = 600ns is shown
in Fig. 4.4(c). From this calibrationmeasurement, we fit the dependenceα(β|τ), and
we perform this calibration for a set of different wait times τ .

During the optimization of the QEC performance, our RL agent is asked to pick
the optimal values of the large displacement amplitude α and of the conditional
displacement amplitude β. Therefore, we need to have a calibrated inversion func‑
tion τ(α, β) that predicts the wait time τ to realize a gate with these parameters. We
find that the empirical relation

τe(α, β) = β

(
p0 +

p1
2α

)
− p2, (4.2)

with fit parameters p⃗ = {p0, p1, p2}, is able to simultaneously fit all ECD calibra‑
tion datasets, such as the one shown in Fig. 4.4(c), sufficiently well to be used with
the training of the RL agent. Note that in the idealized model, we would have
p⃗ = {0, 1/χ, 0}. The empirical fit results are shown in Fig. 4.4(d), where the shaded
region indicates the prohibited parameter values, including the limited dynamic
range of the DAC that allows α ∈ [0, 26] given our choice of fixed‑duration dis‑
placement pulses.
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Figure 4.4 | Calibration of the ECD gate. (a) Realization of ECD gate using the ap‑
proach from [51]. (b)Variation of the out‑and‑back experiment for calibration of the
amplitude α of the large displacement required to achieve a conditional displace‑
ment amplitude β. For a fixed delay τ between out and back displacements, and a
given value of β, we sweep α to find the optimum. The out‑and‑back sequence is
repeatedN times to increase the resolution. At the end of the experiment, the qubit
is probed with a selective pulse conditioned on oscillator in |0⟩. (c) Data from the
amplitude calibration experiment shown in (b), using τ = 600ns and N = 4. (d)
Simultaneous fit of the collection of fixed‑τ datasets, such as the one shown in (c),
to the empirical function in Eq. (4.2). The shaded region indicates the prohibited
parameter values. (e) Cat‑and‑back experiment. Starting with a pure qubit state
|+⟩ and arbitrary oscillator state, this experiment results in a phase accumulation
in the equatorial plane on a qubit Bloch sphere, which is detected with qubit state
tomography. (f) Results of the qubit state tomography in cat‑and‑back experiment
with the ECD gate with wait time τ = 600ns. In this experiment, the oscillator was
initially prepared in the |+Z⟩ grid state. The data is fitted to the model in Eq. (4.4),
shown with black solid lines.
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Calibration of qubit phase

As explained in Ref. [51], this experimental implementation of the ECD(β) gate
results in additional qubit phase accumulation Θ[β] = ξ|β|2, i.e. we implement
ECD(β) = exp(−iσz Θ[β]/2)ECD(β). The amplitude calibration experiment de‑
scribed above is not sensitive to this phase, because the qubit always remains in the
eigenstate of σz. However, this phase is important when conditional displacements
are concatenated, e.g. in the ECD control unitaries, as described in Chapter 5.1.

To calibrate this phase Θ[β], we perform the following “cat‑and‑back” experi‑
ment

ECD(−β)Rx(π)ECD(β), (4.3)

also shown in Fig. 4.4(e), which is ideally equivalent to σx exp(iΘ[β]σz). Start‑
ing with a qubit in |+⟩, the final state will satisfy ⟨σy⟩ = sin(2ξ|β|2) and ⟨σx⟩ =

cos(2ξ|β|2) irrespective of the initial oscillator state.
However, due to decoherence and control imperfections in the ECD implemen‑

tation, we find that the ancilla qubit also experiences loss of purity. Under the as‑
sumption that the losses of purity during the two conditional displacement gates
ECD(β) and ECD(−β) are uncorrelated and independent of the direction in phase
space, we model it as a uniform contraction of the Bloch vector by

√
1− p[β] per

ECD gate, where p[β] = η0 + η2 |β|2 + η4 |β|4. Hence, we fit the cat‑and‑back exper‑
iment to the following model:(

⟨σx⟩
⟨σy⟩

)
= (1− p[β])

(
cos(2Θ[β])

sin(2Θ[β])

)
, (4.4)

with fit parameters {η0, η2, η4, ξ}, of which only ξ is used in the ECD control com‑
pilation method, see Chapter 5.1.

The results of qubit state tomography together with the fit to the model in
Eq. (4.4) are shown in Fig. 4.4(f) for the sameECDgate as in Fig. 4.4(c). As explained
in Ref. [51], the value of ξ depends on the shape of the phase space trajectory dur‑
ing the ECD gate, and thus we calibrate it independently for every choice of delay
time τ .
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4.5 Oscillator error channels

Relaxation and excitation

To measure the oscillator relaxation rate γ c
1 = γ c

↓ + γ c
↑ , we first prepare Fock state

|1⟩ using a unitary control circuit with 5 layers, see Chapter 5.1. After a time de‑
lay of varying length, we measure the remaining occupation of |1⟩ and fit it to an
exponential decay with time constant T c

1 = 1/γ c
1 . To measure this occupation, we

apply a spectrally selective ancilla qubit pulse which flips the qubit conditioned
on one photon in the oscillator. Monitoring the oscillator over a week‑long period,
we find the mean and standard deviation of T c

1 = 606 ± 10µs. As seen from the
histogram in Fig. 4.5(a), the relative fluctuations of T c

1 are small compared to the
relative fluctuations of other error channels in the same time frame. We attribute
this stability to the fact that most of the electromagnetic field of this mode resides
in the vacuum of the cavity.

To bound the rate of thermal excitation γ c
↑ , we apply the feedback cooling tech‑

nique described in Chapter 4.6, to the oscillator in its steady state. Since we find
no detectable difference in the qubit number‑resolved spectroscopy contrast of the
zeroth peak after feedback cooling, the resolution of this measurement of ∼ 1%
provides a bound on the oscillator excitation rate of γ c

↑ < 1/(60ms). This rate is
negligible compared to all other rates in the system and is ignored in the rest of the
analysis.

Dephasing

To measure the rate of dephasing γ c
2 within the {|0⟩, |1⟩} manifold, we prepare a

superposition |0⟩ + |1⟩ using the Y 90 gate realized with a unitary control circuit
with 8 layers, see Table 5.1. After a time delay of varying length we apply the Y 90

gate again and measure the occupation of |0⟩. In the reference frame of the LO, the
oscillator state rotates with angular frequency χ/2 during the time delay, which
results in Ramsey oscillations modulating the exponential decay with decay time
constant T c

2 = 1/γ c
2 . We adjust the sampling rate to make the oscillations appear

slow. We find the one‑week mean and standard deviation of T c

2 = 980± 30µs.
One possible source of oscillator dephasing is stochastic rotations acquired due

to dispersive coupling with the transmon combined with transmon stochastic ex‑
citation and relaxation events [45]. The dephasing rate due to this effect was pre‑
dicted to be γ c,t

φ ≈ n t
thγ

t
↓ in the limit χ ≫ γ t

1 and γ t
↓ ≫ γ t

↑ , where n t
th is the steady‑
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Figure 4.5 | Fluctuating error channels. (a) Histogram of T1 and T2 times of the
transmon and the oscillator, and logical lifetimes of error‑corrected grid states. The
histogram is derived from a week‑long scan described in Chapter 6.10. (b) Oscil‑
lator pure dephasing time extracted from the measured oscillator parameters and
predicted from the dispersive coupling model.

state population of |e⟩. In our system, the correlation between γ c
φ = γ c

2 − γ c
1 /2 and

γ c,t
φ is difficult tomeasure because these rates are small and their estimators are sub‑
ject to strong relative fluctuations. By comparing themedians of theirmarginal dis‑
tributions, γ c,t

φ = 1/(6.5ms) and γ c
φ = 1/(5.1ms), shown in Fig. 4.5(b), we find the

remaining unexplained contribution to dephasing at a rate γ c
? = 1/(24ms) whose

source is not yet identified. It is plausibly related to second‑order excitations from
|e⟩ to |f⟩ [47].

4.6 Active oscillator cooling

Given the long relaxation time T c

1 = 606µs of our oscillator, passive cooling that
relies on the natural interaction with the cold environment is impractically long.
For example, starting with a Fock state |1⟩, it would take approximately 4.6T

c

1 =

2.8ms to reduce the average population to 0.01 photons. In practice, since wework
with the grid states, the required cooling time is even longer. Therefore, the goal
of our active cooling routine is to reduce the experimental duty cycle time and also
to remove any residual thermal population. We achieve these goals via a two‑step
procedure which consists of an engineered dissipative pre‑cooling and subsequent
feedback cooling.
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Figure 4.6 | System cooling. (a) Ancilla reset subroutine with measurement‑
based three‑state feedback. (b) Oscillator feedback cooling subroutine adapted
from Ref. [40]. (c) Demonstration of dissipative cooling of the oscillator starting
from GKP | + Z⟩ state with ∆ = 0.3. A single cooling cycle consists of a pulse
sequence in Eq. (4.8), ancilla qubit reset as in (a), and virtual rotation gate to the
orthogonal quadrature for the next cycle. The duration of a single such cycle is
3.38us. The case ε = 0 is equivalent to passive cooling. Dashed lines represent
the contrast of the zeroth photon number peak in qubit spectroscopy after passive
cooling of 5ms and after feedback cooling with Y = 3.



4.6 | Active oscillator cooling 43

Dissipative pre‑cooling

We introduce a novel oscillator cooling method based on the conditional displace‑
ments, ancilla rotations, and ancilla resets. This protocol can also be realized in
trapped ions, as was hinted in Ref. [54].

To derive this protocol, we apply the same dissipation engineering framework
[98] as used in Ref. [53] to derive the SBS stabilization of the GKP manifold. The
dissipator γD[a] can be approximated with a sequence of discrete entangling in‑
teractions U(t) between the ancilla and the oscillator, and ancilla resets. For γD[a],
the interaction should be of the form U(t) = exp[−i

√
γt(aσ+ + a†σ−)], where the

constraint ⟨a†a⟩γt≪ 1 controls the validity of this discrete approximation. To fur‑
ther approximate this unitary as a multi‑layer circuit with gates from our gate set,
we perform the first order Trotter decomposition:

U = exp

(
−i
√
γt

2
(xσx + pσy)

)
(4.5)

= exp

(
−i
√
γt

2
xσx

)
exp

(
−i
√
γt

2
pσy

)
+O(γt) (4.6)

≈ R†
y(π/2)ECD(−iε)R†

x(π/2)ECD(ε)Ry(π/2)Rz(π/2), (4.7)

where we defined the “trimming amplitude” ε =
√
γt. Furthermore, since the

ancilla qubit is assumed to always start in |g⟩, we can omit the first gate Rz(π/2).
The resulting unitary part of the dissipative cooling circuit is:

R†
y(π/2) ECD(−iε)R†

x(π/2) ECD(ε)Ry(π/2), (4.8)

also summarized in Table 5.1. To achieve uniform cooling in all directions in phase
space, the orientation of the ECD gates needs to cycle between position and mo‑
mentum quadratures. A single cycle, including the pulse sequence in (4.8), ancilla
reset, and subsequent virtual rotation gate on the FPGA, has a duration of 3.38µs.

To demonstrate the performance of this cooling protocol, we start with a |+Z⟩
grid state with ∆ = 0.3 and apply varying number of cooling cycles, monitoring
the population of |0⟩with a selective qubit pulse. As seen in Fig. 4.6(c), dissipative
cooling allows the state to shrink towards vacuum significantly faster than passive
cooling. With ε = 0.4, the cooling rate is 20 times faster than energy relaxation
time of the oscillator. For small ε ≤ 0.3 the steady‑state thermal occupation af‑
ter dissipative cooling is similar to passive cooling of this state of duration 5ms.
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Larger ε allows for faster cooling, but at the expense of significant residual thermal
occupation.

Feedback cooling

To remove the residual thermal photons, we further apply the feedback cooling
protocol introduced in Ref. [40] and shown in Fig. 4.6(b). With the help of a se‑
lective qubit pulse conditioned on |0⟩ and qubit measurement, the protocol repeti‑
tively asks the question “Is the oscillator in vacuum?” and terminates only when it
receives Y consecutive “yes” answers. It would be inefficient to run this feedback
protocol starting with an arbitrary initial oscillator state, since the probability py
of obtaining “yes” can be very small. The dissipative pre‑cooling quickly boosts
this probability to a level essentially limited by the fidelity of the selective qubit
pulse, and thereby decreases the run time of the subsequent feedback cooling step.
The run time of feedback cooling is non‑deterministic, but the expected number of
rounds in a model with constant py is

N fc(py, Y ) =
p−Y
y − 1

1− py
(4.9)

Our final routine, called “active cooling” throughout this work, consists of 25
cycles of dissipative pre‑cooling (50 cycles, if counting each quadrature individu‑
ally) with ε = 0.4 followed by the feedback cooling with Y = 3. We estimate that
with py = 0.87, achieved after the pre‑cooling, the expected run time of the whole
routine is approximately 50× 3.38µs+N fc(0.87, 3)× 25µs = 270µs, which in our
system corresponds to 0.45T c

1 (and could potentially be reduced further).
From the contrast of the zeroth photon number peak in the qubit spectroscopy

[dashed lines in Fig. 4.6(c)], we see that passive cooling of duration 5ms starting
from the | + Z⟩ grid state still leaves a residual thermal population larger than
what our protocol achieves in a much shorter time. However, when active cooling
is applied to an oscillator in its steady state (nominally, vacuum) we find no resolv‑
able improvement of the spectroscopy contrast, which leads us to conclude that the
residual thermal population after active cooling is at the sub‑percent level where it
cannot be resolved with our spectroscopy. This observation is used in Chapter 4.5
to derive an upper bound on the oscillator thermal excitation rate.



5
Quantum control optimization
This chapter describes model‑based and model‑free optimization methods used to
improve the performance of our system. The model‑based optimization of con‑
trol pulses, described in Chapter 5.1, is largely based on the work of A. Eickbusch
et al. in Ref. [51]. It stands out among other approaches to quantum control be‑
cause of themodularity and sparse parametrization, which is in stark contrast with
the dominant approach based on the gradient ascent pulse engineering (GRAPE).
The framework of model‑free optimization of quantum control with reinforcement
learning, described in Chapter 5.2, is a novel contribution of this thesis, described
in more detail in Ref. [55].

5.1 Model‑based optimization of control circuits

Circuit decomposition

Our control gate set consists of two parametrized gates: (i) echoed conditional dis‑
placement of the oscillator ECD(β) = σxD(σz β/2), whereD(α) = exp[αa†−α∗a] is
the displacement operator, and (ii) rotation of the qubit around an axis in the equa‑
torial plane R(φ, θ) = exp

[
−i(θ/2)(σx cosφ+ σy sinφ)

]
. Recently, it was shown

that this gate set is well suited for the universal control of an oscillator with weak
dispersive coupling to a qubit [51]. Most unitary operations in our experiment are
decomposed as parametrized multilayer circuits of the form

circuit(β,φ,θ) = ECD(βT )R(φT , θT )︸ ︷︷ ︸
layer T

· · · ECD(β1)R(φ1, θ1)︸ ︷︷ ︸
layer 1

, (5.1)

where β ∈ CT is a vector of conditional displacement amplitudes, and φ,θ ∈ RT

are vectors of qubit rotation phases and angles respectively. For example, weutilize
this decomposition as part of the following operations:

− Dissipative cooling of the oscillator, see Chapter 4.6.

− Preparation of the GKP states, see Chapter 6.8.

− Small‑Big‑Small protocol, see Chapter 6.3.

− Preparation of the Fock state |1⟩, see Chapter 4.5.

45
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Dissipative cooling SBS protocol GKP |+ Z⟩ preparation
t β φ θ β φ θ β φ θ

1 +0.4 +π/2 +π/2 +0.2i +π/2 +π/2 +0.52 + 2.54i −1.28 +1.57

2 −0.4i 0 −π/2 +
√
2π 0 −π/2 −0.83− 0.36i +2.85 −2.76

3 0 +π/2 −π/2 +0.2i 0 +π/2 −0.36 + 0.85i +0.29 +0.55
4 0 +π/2 −π/2 −0.86 + 1.61i −0.29 +1.43
5 −2.16 + 0.12i +0.29 +0.92
6 −0.09 + 1.73i +2.85 −1.56
7 +2.05 + 0.73i +0.29 +1.08
8 +0.22− 0.66i −0.29 −2.71
9 −0.08− 1.56i +0.29 +2.06
10 +0.19 + 0.04i +2.85 +1.60
11 0 +1.86 +1.57

Table 5.1 | Circuit parameters. Parameters for dissipative cooling and SBS proto‑
col are created based on the models described in Chapter 4.6 and Ref. [53] respec‑
tively. Parameters for |+Z⟩ grid state preparation are numerically optimized with
Keras.

− Y 90 gate on Fock {|0⟩, |1⟩} encoding, see Chapter 4.5.

Circuit optimization

A circuit optimizationmethod for this gate set was developed in Ref. [51]. Here, we
present a simplified modular framework based on the Keras library [109], which
allows to optimize circuit parameters in a manner similar to training of the neu‑
ral networks. The parametrized control circuits (5.1) are created as instances of
the tf.keras.Sequential class which is commonly used for concatenating multi‑
ple neural network layers. Here, we instead use custom layers representing the
parametrized gates ECD(β) and R(φ, θ) as subclasses of tf.keras.layers.Layer.
This allows us to exploit flexible and user‑friendly application‑programming in‑
terface of the Keras library to optimize the circuit parameters and automatically
monitor various aspects of the optimization progress. To illustrate the accessibil‑
ity of such an approach, in Fig. 5.1 we provide an example code for optimization
of the Y 90 gate on the {|0⟩, |1⟩} qubit. Complete code with dependencies and fur‑
ther examples is available in Ref. [110]. Such optimization, which is performed for a
batch ofB = 300 circuit candidates in parallel on a graphics processing unit (GPU),
takes about 10 minutes to finish. In Table 5.1, we list circuit parameters for some
of the control operations in our experiment. Curiously, some of the numerically
optimized parameter values are clearly interpretable, e.g. in GKP state prepara‑
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Figure 5.1 | Circuit optimization. Example of a Python script for optimization of
the circuit parameters for Y 90 gate on the {|0⟩, |1⟩} qubit. Gates are represented as
customKeras layers, and the circuit is compiled as sequential model. Optimization
utilizes TensorFlow backend for automatic differentiation of the model.
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Figure 5.2 | Waveform for | + Z⟩ grid state preparation. The parametrized con‑
trol circuit is decomposed into primitive gates: qubit rotations, oscillator displace‑
ments, and conditional rotations. The waveform is compiled from this sequence of
gates using experimental calibrations. Each qubit rotation and oscillator displace‑
ment is replacedwith a correspondingGaussian pulse, and the conditional rotation
is replaced with a delay of certain length during which the system freely evolves
under the dispersive coupling Hamiltonian.

tion circuit the rotations at steps t = 1, 6, 10, 11 seem to be by an angle π. Detailed
inspection of these circuits can lead to improved analytic constructions, which is
left for future research.

Pulse compilation

Having obtained the circuit parameters, we compile thewaveforms to be played on
the qubit and oscillator control lines. Such compilation requires prior calibration of
the rotation R(φ, θ) gate, described in Chapter 4.1, and the ECD(β) gate, described
in Chapter 4.4.

As explained in Ref. [51] and in Chapter 4.4, our experimental implementation
of the ECD(β) gate results in additional qubit phase accumulation Θ[β] ∝ |β|2,
i.e. we implement ECD(β) = exp(−iσz Θ[β]/2)ECD(β). We use the experimental
calibration of this phase to adjust the numerically optimized vector φ according to
the rule

φt ← φt −
t−1∑
τ=1

(−1)t−τΘ[βτ ], t > 1. (5.2)

In addition, in many cases of interest the ancilla qubit at the end of the circuit
returns to |g⟩ anddisentangles from the oscillator. In such cases, the last conditional
displacement ECD(βT ) can be realized as a simple displacement D(βT/2). We use
this simplification in state preparation circuits and in the SBS protocol.
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In Fig. 5.2, we show an example waveform for unitary preparation of the |+Z⟩
grid state using a parametrized circuit with T = 11 layers. Each ECDgate is decom‑
posed via large displacements and conditional rotations. For clarity, in this exam‑
ple all conditional rotations are implemented with a constant wait time τ = 200ns;
hence, the whole compiled waveform has a duration of 6.4µs. Faster implementa‑
tions are possible if the wait time is adapted to the magnitude of the conditional
displacement, as described in Chapter 4.4. For example, in our system the con‑
ditional displacement of amplitude |β| < 0.5 could, in principle, be implemented
with zero wait time, see Fig. 4.4(d).

5.2 Model‑free reinforcement learning for QEC

While most quantum operations in our experiment are optimized with a model‑
based approach described above, for quantum error correction we deploy a more
powerful framework of model‑free optimization. We use a reinforcement learning
algorithm called proximal policy optimization (PPO) [56, 78]. For a detailed de‑
scription of this algorithm in the context of quantum control we refer to Ref. [55];
here, we only provide a basic high‑level picture. The complete training loop of our
experiment is illustrated in Fig. 5.3; it is structured as follows:

Step 1. On training epoch t, neural network produces a probability distribution
N (µ⃗t, σ⃗t), where µ⃗t = µ⃗(θt), σ⃗t = σ⃗(θt), and θt summarizes the values of all weights
and biases of the neural network in the current epoch.

Step 2. We sample a batch of B = 10 parameter vectors from this distribution.
They correspond to differentQEC circuit candidates that should be evaluated in ex‑
periment. The neural network and sampling are implemented on NVIDIA 2080Ti
graphics processing unit (GPU) in a separate computer. The sampled vectors are
sent to the control computer via a local area network with negligible communica‑
tion time.

Step 3. Based on these parameter vectors, we compile QEC circuit candidates,
translated into FPGA instructions and DAC waveforms. All circuit candidates fol‑
low the same program execution flow, but the control waveforms and the content
of FPGA registers is different for every candidate. The FPGA is reset and its wave
memory is updated. This time‑consuming step is the bottleneck of the training
loop.

Step 4. Each candidate is evaluated in experiment. To this end, we initialize
logical Pauli eigenstates |+Z⟩ and |+X⟩, run the QEC for T = 160 cycles, and then
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Figure 5.3 | Reinforcement learning. (a) Experimental training loop. (b) Training
time budget per epoch.
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perform one‑bit phase estimation of the corresponding logical Pauli operators. To
suppress the sampling noise, we repeat this Navg = 150 times per Pauli and per
circuit candidate. In total, one epoch of training consists of Ntot = 2BNavg = 3000

experimental shots.
Step 5. To produce the reward, we treat the measurement of a Pauli operator

after T cycles as a proxy for logical lifetime. While averaging themeasurement out‑
comes, we mask the experimental shots that started with incorrect state initializa‑
tion, as flagged by a verification ancilla measurement after the state initialization.

Step 6. Once the rewards are available, PPO algorithm updates the neural net‑
work parameters θt → θt+1 for the next epoch. The gradients of these parameters
are computedwith automatic differentiation via back‑propagation. After updating
the neural network, the new training epoch begins.

The time budget of this training is shown in Fig. 5.3. All steps outlined above
amount to 15.6 s per epoch. In the current implementation, the major bottleneck
is Python‑to‑FPGA transition (step 3). Because of this, the implementation is less
optimal in terms of sample efficiency than the proposal in Ref. [55]. The optimal
approach would be to spend the total sample budget per epoch to evaluate more
circuit candidates with minimal accuracy, instead of evaluation only a few candi‑
dates with high accuracy (achieved through averaging). In other words, based on
the results of Ref. [55], we expect that a trainingwith (B,Navg) = (1000, 1)would re‑
quire fewer experimental shots to reach a given performance level than a training
with (B,Navg) = (10, 100). However, considering the total run time of the train‑
ing, we had to compromise between bare sample efficiency (number of shots) and
the overhead in step 3 of the pipeline. The overhead is independent of Navg but
increases with B, and due to a limited FPGA instruction sequence length we can
only evaluate B ≤ 10 candidates per compilation. After paying the compilation
overhead in step 3, a certain amount of averaging comes essentially for free and
does not considerably affect the run time, hence the choices made here.

In Chapter 6.4, we describe theQEC circuit parametrization, show the evolution
of parameter values during the course of training, and provide interpretation of the
observed trends.



6
Quantum error correction
This chapter contains additional details on the grid‑code QEC that supplement the
main results summarized inChapter 2. The grid code for embedding a qubit into an
oscillator, briefly described in Chapter 6.1, was known for a little over two decades
[31], but its first experimental realization was achieved only recently [42]. Shortly
afterwards, an improved protocol for error correction of this codewas theoretically
proposed in Ref. [53] and a similar protocol was (independently) proposed and
realized in a trapped ion system [54]. Chapter 6.2 of this thesis describes a novel
understanding of such a protocol, developed in collaboration with my colleagues
B. Royer and S. Singh after the experiment was already completed.

6.1 Brief introduction to grid code

Qubit‑register stabilizer codes are based on the group of Pauli operators; consider
instead a stabilizer code based on the group of oscillator displacement operators.
By definition, the+1 eigenstates of a displacement operatorD(α) are displacement‑
invariant in phase space along the direction ofαwith a period |α|. Having two code
stabilizers SX

0 = D(αX) and SZ
0 = D(αZ) imposes displacement invariance along

two non‑equivalent directions, which means that all codewords are grids in phase
space with a unit cell defined by {αX , αZ}. The requirement of commutativity of
SX
0 and SZ

0 imposes a constraint

α∗
XαZ − αXα

∗
Z = 2l2sni, n ∈ Z, (6.1)

where lS =
√
2π. Here, we consider encoding of a single logical qubit into an

oscillator, which corresponds to n = 1. By parametrizing the complex‑valued dis‑
placement amplitudes as αX = lS[M22 − iM12] and αZ = lS[iM11 −M21], we obtain
a grid code with the following stabilizers:

SZ

0 = D(lS[iM11 −M21]), (6.2)

SX

0 = D(lS[M22 − iM12]). (6.3)

52
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Figure 6.1 | Wigner functions (numerical) of grid states.

From the constraint (6.1) we derive a single requirement that a real matrix

M =

[
M11 M12

M21 M22

]
(6.4)

has a determinant detM = 1. This matrix defines the structure of the grid in
phase space. Here, we only consider the square grid code, which is obtained with

M =

[
1 0

0 1

]
. The hexagonal code with M =

√
2√
3

[
1 1/2

0
√
3/2

]
was previously

realized in Ref. [42].
The Pauli operators of the logical qubit are defined as

XL =
√
SX
0 = D(lS[M22 − iM12]/2), (6.5)

ZL =
√
SZ
0 = D(lS[iM11 −M21]/2). (6.6)

They satisfy the standard algebraic properties X2
L = I , Z2

L = I , and XLZL =

−ZLXL, inside the code space. Using the identity YL = −iZLXL, we find the third
Pauli operator YL = −iD(lS[iM11 − iM12 +M22 −M21]/2).

The eigenstates of PauliZL of the ideal grid code are shown in Fig. 6.1(a). Finite‑
energy code families can be obtained by regularizing the ideal code through ap‑
plication of an envelope operator [53, 111], with a common choice being N∆ =
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exp(−∆2n). We show several members of this code family in Fig. 6.1(b‑d). Note
that such a regularization leads to non‑orthogonal states, with fidelity loss due to
the finite state overlap that scales as ∝ exp[−(3/8)π/∆2]/(1 − exp(−2∆2)) (see Eq.
S28 in Ref. [53]), which is negligible for our choice of ∆ = 0.34.

6.2 Small‑Big‑Small (SBS) protocol

Here, we describe the SBS protocol, first proposed in Ref. [53, 54] from a new angle.
The full QEC circuit in this protocol is shown in Fig. 6.2(a) with nominal parameter
values listed in Table 5.1; it implements a channel R∆(ρ) = (RZ

∆ ◦ RX
∆)(ρ). Let

(K
X/Z
g , K

X/Z
e ) denote the Kraus operators of the constituent rank‑2 channels RX/Z

∆

(we omit the∆ subscript from the Kraus operators for simplicity). These operators
read:

KX

g = cos(
√
πp) cos(

√
π∆2x) + sin(π∆2/2) cos(

√
πp), (6.7)

KX

e = − cos(π∆2/2) sin(
√
πp) + i cos(

√
πp) sin(

√
π∆2x), (6.8)

where x = (a + a†)/
√
2 and p = i(a† − a)/

√
2, and (KZ

g , K
Z
e ) are obtained with

a substitution (x, p) → (−p, x). Then, the Kraus operators of a composite rank‑4
channel are:

Kgg = KZ

gK
X

g , Kge = KZ

gK
X

e , Keg = KZ

eK
X

g , Kee = KZ

eK
X

e . (6.9)

For ∆ = 0.34, these Kraus operators are shown as matrices in the truncated
eigenbasis of K†

ggKgg in Fig. 6.2(b). This eigenbasis splits into pairs of states Ci =
{|0Li ⟩, |1Li ⟩}, i ∈ N, that define orthogonal replicas of the logical subspace C0 gener‑
ated by the errors. We show the Wigner functions of the projectors Π0, Π1, and Π2

onto the first three subspaces in Fig. 6.3(a). Note thatΠ1 ≈ aΠ0 a
† andΠ2 ≈ a† Π0 a,

hence the errors in the first level of hierarchy resemble photon loss (a) and gain
(a†) errors. While a and a† only approximately satisfy the Knill‑Laflamme con‑
ditions [69] for the finite‑energy grid code, the actual error operators that define
the subspaces C1 and C2 satisfy these conditions exactly (since the eigenspaces of
a Hermitian operator K†

ggKgg are orthogonal). Similarly, by inspecting the Wigner
functions of the projectors onto higher subspaces, we find that the second level of
error hierarchy resembles a2, a†a and a†2. The number of error subspaces in each
level is given by the number of unique combinations of a an a†: two subspaces (a
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Figure 6.2 | SBS protocol I. (a) Circuit structure of one QEC cycle. (b) Kraus op‑
erators of the QEC cycle with ∆ = 0.34, written in the eigenbasis of K†

ggKgg. This
eigenbasis splits into pairs of states Ci = {|0Li ⟩, |1Li ⟩}, i ∈ N, that define replicas of
the logical subspace C0. Color encodes the absolute value of the matrix elements.
(c) Flow diagram corresponding to each Kraus operator. Circles represent error
spaces, and arrows show the most relevant matrix elements. The dynamics within
the subspaces is discarded in this representation.
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Figure 6.3 | SBS protocol II. (a)Numerical Wigner functions of the projectors onto
the subspaces C0, C1, and C2. Comparison to the subspaces generated from the code
space by the errors a and a† reveals that the errors in the first level of hierarchy ap‑
proximately correspond to a and a†. (b)Quantum state trajectories with errors and
QEC. The state is represented in the same basis as in Fig. 6.2(b); color encodes the
absolute value of the state components in this basis. Red dotted lines are guides to
the eye that separate the error subspaces. The occurrence of errors is indicatedwith
red arrows at the top. The time axis is measured in QEC cycles. The Kraus opera‑
tors are applied between the time steps, and the syndrome string (bottom) encodes
which Kraus operator was applied on every step. The state transfer fidelity, shown
at the bottom, measures the squared overlap of the final and initial state vectors.

and a†) in the first level, and three subspaces (a2, a†a and a†2) in the second level,
leading to the blocks of size 4×4 and 6×6 in the Kraus matrices in Fig. 6.2(b). Fur‑
ther understanding the structure of the error hierarchy is the subject of ongoing
research.

Unlike in the standard stabilizer formalism of QEC [4], Kraus operators here do
not correspond to a projection of a state onto a single error subspace and its sub‑
sequent transfer to the code space. Instead, the transfer here is realized gradually,
following an error hierarchy imposed by theQEC circuit. To clarify the action of the
Kraus operators, their reduced representation using directional flow of a quantum
state between error subspaces is shown in Fig. 6.2(c) [this representation ignores
the dynamics within each subspace]. We now briefly discuss the interpretation of
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the processes corresponding to each of the gg, ge, eg, ee outcomes of a QEC cycle.
Outcome gg heralds a process in which the state has remained in the same sub‑
space. The probability of emitting gg from within the code space is nearly 1. This
property is exploited in Chapter 6.5 to extract the expectation value of the code pro‑
jector ⟨Π0⟩ from the statistics of long strings of the gg/gg/... type. Both ge and eg
outcomes herald the process in which the quantum state was transferred one level
down the error hierarchy. Strings like eg/eg/eg/... therefore correspond to pro‑
cesses in which the state directionally hops level by level towards the code space.
Finally, the ee outcome heralds a transfer two levels down the error hierarchy.

Besides the transfer between the error spaces, theKraus operators apply a deter‑
ministic logical flip: XL in theRX

∆ cycles, andZL in theRZ
∆ cycles. This flip is visible

in the off‑diagonal structure of the sub‑blocks in the Kraus matrices, see Fig. 6.2(b).
For example, the lower right 2 × 2 block in Kgg represents the code subspace, and
the off‑diagonal structure represents the combined effect of XLZL = −iYL on the
codewords. Due to this effect, the lifetime of +1 and −1 logical Pauli eigenstates
in our QEC protocol are exactly equal. We track the Pauli frame in software, and
undo its change in the data reported in Fig. 2.3.

To demonstrate how the errors are corrected by this QEC scheme, we show
several examples of quantum state trajectories in Fig. 6.3(b). In the first trajectory,
the state is initialized as one of the logical basis states, and then evolved for several
QEC cycles without any errors. The Pauli frame switching is apparent here from
the oscillating pattern within the code space (in this picture, the phase information
is not shown, but the QEC process also protects the phase of the logical qubit).
In the second trajectory, an error a† was applied to the state prior to QEC, and
then it was almost perfectly corrected, accompanied by the emission of eg/gg/...
syndrome string. In the third trajectory, this error was instead corrected during
the third QEC cycle, and the quantum state spent extra time in the error space
C2. This example explicitly demonstrates that the Pauli frame update is applied
correctly irrespective of the subspace, hence Pauli gates done in this manner are
transversal. The subsequent trajectories demonstrate that even higher‑order errors,
such as a†2 or a†4, can be corrected with high fidelity. Moreover, as seen in the fifth
trajectory, the state can be recovered even if additional errors happen while the
previous errors have not yet been fully corrected. The latter example highlights
that the “slowness” of the low‑rank error‑correction dissipation is not a problem,
as long as the error rate is sufficiently small compared to the correction rate.

A few remarks with regards to the simplified interpretation of the QEC process
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in Chapter 2 are in order: (i) The correct interpretation of the action of a QEC cycle
requires considering pairs of outcomes, like ge, instead of isolated outcomes, like g
or e. We adopted the latter approach in Chapter 2 for simplicity of exposition. (ii)
The gg outcome does not herald the projection onto the code space, as mentioned
in Chapter 2, but rather a process in which “no error was corrected”. Conditioned
on the state residing in the code subspace, this outcome will be emitted with prob‑
ability nearly 1. However, if the state is in one of the error spaces this outcome can
still occur with smaller probability starting from about 0.47 at the lowest level in
the error hierarchy and reducing for higher levels. (iii) When one of the outcome
eg, ge or ee is obtained, there is a small chance that the QEC process has added
an error, leading to a random walk among the error spaces that is heavily biased
towards the code space.

6.3 QEC cycle: implementation details

In this section, wedescribe implementation details of aQEC cycle, whose schematic
is shown in Fig. 6.2(a). The various datasets in this work were taken with several
different versions of theQEC circuit. All these versions have the same overall struc‑
ture, but different parameter values obtained from re‑training after the system drift
has appreciably affected the logical performance (this happens on a time scale of 1‑
2 weeks, see Chapter 6.10). Below, the quoted durations of various components of
a QEC cycle refer to the circuit version that we used to collect the system lifetimes
dataset and that achieved the highest reported QEC gain.

SBS unitary

We refer to the unitary part of the circuit U∅ prior to ancilla measurement as “SBS
unitary” since it is based on the ansatz from Ref. [53]. The SBS unitary is com‑
piled as a four‑layer parametrized circuit with nominal parameters shown in Ta‑
ble 5.1, and is further translated into the pulse sequence with themethod described
in Chapter 5.1. The last circuit layer does not contain an ECD gate, and instead only
contains a qubit rotation and oscillator displacement. Since the qubit is reset after
the SBS, the function of the latter rotation is to choose the “reset axis”, which can
be an arbitrary axis on the qubit Bloch sphere.

As shown in Ref. [53], without any special asymmetries between |g⟩ and |e⟩ it
would not matter along which axis the ancilla reset is done – all choices result in
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Component Subcomponent Duration (ns)
Enter cycle 24

SBS

Enter SBS 24
Circuit layer 1 502
Circuit layer 2 708
Circuit layer 3 262
Circuit layer 4 76

Exit SBS 24

Reset

Enter reset 24
Roundtrip delay 300
Acquisition 1400

Signal processing 332
Distribution of s0 and s1 100
Branching and feedback 200

Exit reset 24

Virtual rotation Mixer matrix calculation 400
Mixer update 48

Idle Delay 452
Exit cycle 24

Table 6.1 | Timing of the cycle components.

the same completely positive trace‑preserving map after averaging over the mea‑
surement outcomes. However, in practice the asymmetry comes from the ancilla
relaxation channel that degrades the readout fidelity of the |e⟩ state. Hence, it is
advantageous to choose the reset axis that preferentially returns the |g⟩ outcome.
The parameter sequence for SBS unitary in Table 5.1 takes this choice into account.
The choice of reset axis also results in different unraveling of state trajectories and
different Kraus operators. The choice made here enabled the interpretation of e
outcomes as syndromes that signal occurrence and correction of errors, which is
utilized in the post‑selection experiments, described in Chapter 6.7. This is in con‑
trast with Ref. [42], where g and e outcomes are interpreted as left or right displace‑
ment of the grid.

The duration of the SBS unitary is not fixed, because its constituent ECD gates
can be implemented with different choices of the speed enhancement factor α (am‑
plitude of the intermediate displacement). Since α is included in the action space of
the RL agent, all circuit candidates during the training have different durations of
the SBS unitary (we will soon comment on how this affects the reward comparison
among them). In the final circuit that achieved the highest reported QEC gain, the
duration of SBS unitary is tSBS = 1546ns.
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Ancilla reset

In principle, error correction with SBS protocol could be fully autonomous (with‑
out a classical feedback loop) as was envisioned in the proposal [53] and realized
in a trapped ion system [54]. The autonomous scheme has an advantage of sig‑
nificantly simplifying the demands on the classical co‑processor (in our case, the
FPGA). Moreover, there exist various dissipative reset protocols for the transmon
[112–114]. However, the disadvantage of a fully autonomous implementation in
our system is that it is not able to compensate for a spurious rotation of the oscil‑
lator due to the always‑on dispersive coupling with the ancilla. The back‑action of
discarding the ancilla state during the reset is the dephasing of the oscillator – a par‑
ticularly harmful error channel for the GKP code [53]. Partly because of this reason,
we chose to implement ancilla reset through measurement and classical feedback,
as described in Chapter 4.3, with the total duration of ancilla reset subroutine of
treset = 2332ns.

Virtual rotation

Due to the always‑on dispersive coupling, the oscillator acquires a spurious rota‑
tion during the ancilla readout time. In experiment [42], a simple echo sequence
was used to cancel this rotation. With such an approach, ancilla spends half of the
time in |g⟩ and half in |e⟩ regardless of the actual syndromemeasurement outcome,
which is detrimental to the code due to additional error sources associatedwith the
|e⟩ state. Here, we instead chose the reset axis which results in 0.9 probability of de‑
tecting |g⟩. Therefore, the ability to compensate for the spurious oscillator rotation
without echoing the state back to |e⟩ is crucial to maintain this advantage.

We achieve this by dynamically tracking the oscillator phase that stochastically
changes due to random ancilla measurement outcomes, and compensating for it
with a virtual counter‑rotation. The spurious oscillator rotation angle accumulates
during the reset time treset, during the time tVR that it takes to execute the virtual
rotation on the FPGA, and during the idle time tidle when ancilla is nominally in
|g⟩ (the latter will be explained shortly). Therefore, in the idealistic dispersive cou‑
pling model, the oscillator would rotate by ϑg = χ(tVR + tidle + treset)/2 if the an‑
cilla is found in |g⟩, and ϑe = χ(tVR + tidle − treset)/2 if it is found in |e⟩. Although
the |f⟩ state is not computational, our controller is able to reset it with an accom‑
panying virtual rotation by angle ϑf . Instead of relying on the simple dispersive
coupling model, in experiment we independently calibrate the angles ϑg/e/f with a
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variation of out‑and‑back experiment [51] to account for additional minor timing
contributions related to FPGA program entering or exiting a subroutine, etc. These
calibrated angles are used to initialize the QEC circuit for training.

Another important aspect of the virtual rotation is the switching between mo‑
mentum and position quadratures of the oscillator to realize RX

∆ and RZ
∆ dissipa‑

tors. Such switching can be achieved with a rotation of the SBS unitary by π/2 in
phase space. This results in additional deterministic contribution ϑSBS in every vir‑
tual rotation gate. The value of ϑSBS is π/2 for the square grid code, and π/3 for
hexagonal grid code.

The virtual rotation gate utilizes a floating point register ϑ on the FPGA. During
this gate, the FPGA performs the calculation ϑ← ϑ+ϑg/e/f +ϑSBS with subsequent
reconfiguration of the dynamic mixer matrix which applies a rotation transforma‑
tion to the oscillator pulses before they are being streamed at the DAC. The total
duration of the virtual rotation gate that includes all these steps is independent of
ϑ and is equal to tVR = 448ns.

Idle section

During the agent training, the reward is measured after a fixed number of T = 160

cycles, and not after some fixed physical duration of time. Therefore, it is necessary
to keep the duration of a QEC cycle constant across different protocol candidates
to ensure a fair reward comparison. At the same time, the agent is able to affect the
physical duration of the SBS unitary by changing the speed enhancement factor α
in the ECD gates. To reconcile these two requirements, after the virtual rotation
gate we add a section of idle time that is calculated based on the duration of the
SBS unitary in each circuit candidate. We constrain the combined duration of SBS
unitary and the idle section to be 2µs. In the circuit that achieved the highest re‑
ported QEC gain, the duration of the idle section was tidle = 452ns. Note that in
the previous QEC experiments that tried to create a long‑lived quantum memory
[40, 41], the idle section was inserted intentionally to avoid frequently entangling
the high‑quality oscillator with low‑quality ancilla. Here, we find that inserting
any additional idle time degrades the performance, hence we kept it nearly to a
minimum while still leaving some room for change of the SBS duration by the RL
agent.

In Table 6.1, we provide a detailed timing breakdown of all cycle components.
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6.4 Learned and scripted parameters

Our QEC protocol has multiple parameters which could be optimized to improve
its performance. Some of these parameters are difficult to incorporate into our opti‑
mization framework in its current form, and therefore their values are chosen as an
approximate compromise between various tradeoffs and then held constant. The
rest P = 45 of them are optimized with reinforcement learning, given a reasonable
starting point obtained from independent calibrations. Here, we briefly explain the
meaning of these parameters.

Scripted parameters

◦ Duration, shape, and amplitude of the readout pulse.
◦ State classification thresholds.
◦ Timing of all components of the reset subroutine.
◦ Durations of primitive pulses (qubit rotations and oscillator displacements).
◦ Combined duration of the SBS unitary and the idle section.

Learned parameters

◦ Virtual rotation angle (ϑg, ϑe, ϑf ) for each measurement outcome. It is ini‑
tialized with a result of independent calibration using a variation of out‑and‑back
experiment.
◦ Detuning of transmon |g⟩ ↔ |e⟩ and |e⟩ ↔ |f⟩ pulses (same parameter for all

pulses). It is initialized with a result of independent calibration, when oscillator is
in the vacuum state (i.e. when there is no Stark shift).
◦ Spectral corrections to |g⟩ ↔ |e⟩ and |e⟩ ↔ |f⟩ pulses based on derivative

reduction by adiabatic gate (DRAG) scheme [82] (same parameter for all pulses).
It is initialized with 0.
◦ Complex‑valued amplitudes of conditional displacement gates in the first

three layers of the SBS unitary, and a complex‑valued amplitude of the uncondi‑
tional displacement in the fourth layer. Two small amplitudes are initialized with
βS1 = βS2 = 0.2i, and the big amplitude is initialized with βB =

√
2π. The uncondi‑

tional displacement is initialized with 0.
◦Magnitudes of the intermediate large displacements used to execute the ECD

gates in the first three layers of the SBS unitary. They are initialized with αS1 =

αS2 = 6 for small conditional displacements and αB = 16 for the big conditional
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Figure 6.4 | Evolution of QEC circuit parameters during the training. Top row:
example from one particular training run. The shaded region bounds the minimal
and maximal sampled parameter values. Solid lines indicate the mean. Bottom
row: evolution of the mean parameter values in several independent training runs
performed during a two‑day period, showcasing the reproducibility of the training
results.



6.4 | Learned and scripted parameters 64

displacement. Note that changing these parameters also influences the duration of
the ECD gates.
◦Angular corrections to intermediate large displacements in the first three lay‑

ers of the SBS unitary. These heuristic parameters compensate for effect of second‑
order dispersive shift and for the fact that conditional displacement accumulates
along an arc of small curvature instead of a straight line. These corrections are
initialized with 0.
◦ Phases and angles of all ancilla rotations in the SBS circuit layers (including

the echo pulses inside the ECD gates), and in the ancilla reset subroutine. These
parameters are initialized with nominal values from Table 5.1.
◦ Detuning of the local oscillator (LO) frequency for the cavity mode. This LO

is calibrated with spectroscopy and set to be half‑way between the number‑split
oscillator frequencies when qubit is in the states |g⟩ and |e⟩, corresponding to∆ = 0

in Eq. (4.1).

Evolution of parameters during training

In Fig. 6.4, we show the evolution of several QEC circuit parameters during the
training. Most parameters, when initialized well, merely exhibit small fluctua‑
tions around themean. However, some parameters undergo systematic and repro‑
ducible changes, as observed in the provided examples. For instance, in Fig. 6.4(a),
the big conditional displacement amplitude Re[βB], which we expect to be equal to
the size of the grid unit cell, changes from a calibrated value of

√
2π by about 8%,

likely indicating the presence of amiscalibration error (the last calibrationwas done
several weeks prior to this training). Similarly, the trend in Fig. 6.4(e) towards the
negative detuning of the |e⟩ ↔ |f⟩ pulses could be compensating for an additional
Stark shift that was not present at the initial calibration stage (calibration was per‑
formed with vacuum state in the oscillator). In Fig. 6.4(b), the trend in amplitudes
βS1 and βS2 of the two small conditional displacements in the SBS unitary is par‑
ticularly insightful, as it helped us identify a limitation of the proposal in Ref. [53],
according to which the amplitudes βS1 and βS2 should be identical and equal to
i∆2/2, while the RL agent systematically converges to |βS2| > |βS1|. Using simula‑
tions, we verified that in presence of error channels that act during the execution of
the SBS unitary, this is indeed a correct inequality. The optimal ratio of these two
amplitudes is found in simulations to be strongly dependent on the error channel.
The agent adapts this ratio to the real error channel of our system.
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In Ref. [55], it was shown that a similar RL agent is able to converge to correct
solutions even starting from completely random parameter initializations. Here,
we initialize the parameters close to their expected optimal values through various
calibrations, but the compounded effect of small errors (at the level of a fewpercent)
in multiple parameters results in a QEC protocol which, although fully functional,
is far from optimal. In particular, we were not able to reach break‑even with only
the independent calibrations and educated guesses, hence model‑free RL can be
acknowledged as one of the most crucial factors in the success of this project.

6.5 Syndrome measurement statistics

A sample of 600 experimental QEC shots is shown in Fig. 6.5, where QEC is ran for
T = 1000 cycles in each shot. Consider a string of measurement outcomes going
fromany chosen time step ti to a time step ti+2n (it containsnQECcycles). The prob‑
ability P ([gg]n) that this string contains only gg outcomes is shown in Fig. 6.6(a),
where it is averaged over the experimental shots and over initial times ti (the av‑
eraging over ti is done with a sliding window method which is applicable due to
process stationarity). While in themost general case the functional form of P ([gg]n)
is a sum of multiple decaying exponentials, we clearly observe only a single dom‑
inant exponential contribution. Hence, we fit this probability to P ([gg]n) = aλn,
obtaining a = 0.936 ± 0.003 and λ = 0.86517 ± 0.00013. By adopting a model for
the error process and for the QEC process, we can link the fit parameters {a, λ}
to model parameters. In general, such a model would be quite complex. How‑
ever, here we are interested in only two characteristic parameters of the process:
the probability ⟨Π0⟩ of occupying the code space in the dynamical equilibrium of
the QEC process, and the probability perr of having an error that transfers the state
out of the code space. These parameters can be extracted with very minimal model
assumptions.

Using the transfer matrix approach, it can be shown that perr ≈ 1−λ and ⟨Π0⟩ ≈
aλ under the following assumptions: 1) The error probability is small perr ≪ 1,
which is justified since the cycle duration is small compared to all relevant error
rates in the system, and is confirmedby the fit results; 2) The conditional probability
P C0
gg of emitting gg when the quantum state is in the code space is nearly 1. This is

justified, since in the error‑free model of the SBS protocol described in Chapter 6.2
this probability is 0.999; 3) The conditional probability P err

gg of emitting ggwhen the
quantum state is in any of the error spaces is small P err

gg ≪ 1. This assumption is
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Figure 6.5 | Syndrome measurement outcomes. A sample of 600 experimental
QEC shots of duration T = 1000 cycles each. The “g” outcome (green) is prevalent,
heralding the no‑error process, while occasional “e” outcomes (yellow) indicate
correction of errors, and “≥ f” outcomes (red) indicate leakage. When transmon
escapes to a state higher than |f⟩, which is not addressed by our reset scheme, the
leakage outcome persists for multiple cycles (streaks of red). In the readout IQ
plane such states occur above the Q threshold, and therefore they are conveniently
classified as leakage, but without further identification of the exact leakage state.
After transmon stochastically drops back to |f⟩, the controller is able to reset it and
return the ancilla to the computationalmanifold. However, during the cycleswhen
ancilla is effectively inactive, the code is not stabilized. Hence, leakage streaks are
often followed by streaks of e outcomeswhereQEC re‑stabilizes the codemanifold.
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Figure 6.6 | Analysis of syndrome measurement outcomes. (a) Probability of a
string gg/gg/... as a function of its length, together with the fit to a single exponen‑
tial decay. (b) Histogram of durations of leakage events. Events of duration 1 or 2
cycles are predominantly |f⟩ state; longer duration events are likely |h⟩ or higher
excited states. The exponential fit gives the effective lifetime of these leakage states.
(c) Fraction of shots that experienced a leakage event of duration d up to a given
time. Dotted lines are fits to a constant‑rate model, see Chapter 6.6.

partially justified, since in the error‑free model of the SBS protocol this probability
is smaller than 0.5 for the first error space, and then monotonously reduces for the
higher levels of the error hierarchy; 4) The probability P corr

gg of correcting an error
and emitting gg is small P corr

gg ≪ 1. In the error‑free model of the SBS protocol
this probability is exactly zero, while in practice it is limited to ∼ 10−2 due to the
readout infidelity of the |e⟩ state.

This result can be intuitively understood as follows: the two most probable
system trajectories that generate the string of all gg’s correspond to (i) starting in
the code space and remaining there for n steps, which happens with probabil‑
ity ⟨Π0⟩(1 − perr)

n, and (ii) starting in the code space, remaining there for n − 1

steps, and transitioning out on the very last step, which happens with probability
⟨Π0⟩(1− perr)n−1perr. The sum of these two contributions equals ⟨Π0⟩(1− perr)n−1 ≡
aλn, leading to perr ≈ 1− λ and ⟨Π0⟩ ≈ aλ. The corrections to these formulas are of
the second order in parameters {p err, 1−P C0

gg , P
err
gg , P

corr
gg }. From the fit in Fig. 6.6(b),

we extract perr = 0.13 ± 0.02 and ⟨Π0⟩ = 0.81 ± 0.02. Note that this result for ⟨Π0⟩
agrees within the error margin with the result obtained by an independent method
based on the reconstruction of the density matrix from the measuredWigner func‑
tions in Chapter 6.8. Here, the error of the fit is negligible compared to the model



6.6 | Analysis of transmon leakage 68

approximations, hence the quoted error bars are obtained from an estimate of the
second‑order corrections ∼ p2err ≈ 0.02.

Here, we only considered the string of a special type gg/gg/...; an important
avenue of future research would include learning the error channel from the full
statistics of syndrome outcomes, using the dataset in Fig. 6.5.

6.6 Analysis of transmon leakage

To quantify transmon leakage, we histogram its duration in Fig. 6.6(b). The most
likely leakage duration is 1 cycle, since the controller resets |f⟩ to |g⟩with high prob‑
ability. However, because of the finite readout fidelity of |f⟩, shown in Fig. 4.3(b),
the controller sometimes fails to reset this state, resulting in the next most probable
leakage duration of 2 cycles. After that, the histogram follows exponential distribu‑
tion with decay constant of 17.2 cycles, corresponding to 85µs, which we attribute
to the effective lifetime of higher leakage states that are not addressed by our re‑
set scheme. This time scale is consistent with our estimate ∼ 280µs/3 = 93µs of
the |h⟩ state lifetime, derived from the bosonic statistics and the average measured
lifetime of |e⟩ state.

To extract the leakage rate, in Fig. 6.6(c) we plot the fraction of shots that expe‑
rienced a leakage event of a certain duration up to a given cycle. We fit the data to
a constant‑rate model L(t) = 1−exp(−t/τl)where t is the cycle index and pl = 1/τl

is the leakage rate (i.e. leakage probability per cycle). We find τl = 1480 ± 10

cycles, corresponding to a leakage rate of pl = (6.76 ± 0.04) × 10−4. Similar anal‑
ysis can be done for leakage events of length ≥ 2; with the fit to the same model,
we find the time scale of τl,≥2 = 7820 ± 10 cycles, and the corresponding rate of
pl,≥2 = (1.280 ± 0.002) × 10−4. Note that this measurement was performed at the
time of slightly sub‑optimal performance, and therefore the leakage rate at themax‑
imal achieved QEC gain might have been smaller.

Next, we study the correlation of syndromemeasurement outcomes across time.
The correlation matrix is given by

rij =
E[mimj]− E[mi]E[mj]√

(E[m2
i ]− E[mi]2)(E[m2

j ]− E[mj]2)
, (6.10)

where mk is the measurement outcome obtained at cycle k, and empirical expec‑
tation values are obtained by averaging across experimental shots. For the dataset
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Figure 6.7 | Correlation of syndrome measurement outcomes. (a) Correlation
matrix rij for the first 30 cycles, computed from the dataset in Fig. 6.6(a). (b) rij
for the full QEC duration of 1200 cycles with zoomed‑in color scale to resolve small
numbers. (c) rij after removing leakage events of duration≥ 2 cycles. (d, e)Cuts of
the correlationmatrices from (b) and (c) at different locations in the QEC trajectory.
In a stationary process, rij would only depend on |i−j|, which is clearly not satisfied
in (d). After removing length≥ 2 leakage events, the deviation from stationarity is
not resolvable.
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of Fig. 6.5 this correlation matrix is shown in Fig. 6.7(a), where we consider only
the first 30 cycles. Overall, the correlation is weak, and the correlation betweenRX

∆

and RZ
∆ channels (separated by odd number of cycles) is weaker than the correla‑

tion between the same‑quadrature channels (separated by even number of cycles).
By zooming in the color scale to visually resolve small numbers and considering

the full duration of the trajectory of 1200 cycles, as shown in Fig. 6.7(b), it becomes
evident that the process is not perfectly stationary. To emphasize this, we show in
Fig. 6.7(d) the correlation coefficient rij as a function of |i−j| for several choices of j.
Further along the QEC trajectory the process acquires a correlation tail. Although
quite weak, this correlation stretches over hundreds of cycles.

Previously, it was demonstrated that leakage removal helps to reduce corre‑
lated errors in the arrays of transmons [115]. Our QEC protocol already contains
a mechanism for leakage removal from the |f⟩ state through measurement‑based
feedback in every cycle. However, leakage states higher than |f⟩ are not cleared
by our reset. The signature of such leakage events to higher states is two or more
consecutive leakage syndrome outcomes. To check the hypothesis that this resid‑
ual leakage to states higher than |f⟩ is responsible for increase of correlation, we
post‑select trajectories that do not have any length‑two or longer leakage events.
In the post‑selected dataset, the correlation matrix does not display any detectable
non‑stationarity, as seen in Fig. 6.7(c,e), confirming the hypothesis. By fitting the
remaining short‑time correlations in Fig. 6.7(e) to an exponential decay, we con‑
clude that it takes 3.9±0.1 cycles (approximately 2 QEC cycles) to lose the memory
of a typical large error. However, the most probable small errors are corrected in a
single QEC cycle.

6.7 Post‑selection of errors

Here, we provide additional details about the the post‑selection experiment that
verifies the ability of our QEC scheme to faithfully identify the errors. The post‑
selection results are summarized in Table 6.2. Note that this experiment was per‑
formed at the time of slightly sub‑optimal system performance, hence the baseline
results with no post‑selection are lower than in some other experiments reported
here, e.g. in Chapter 6.10. The main conclusion of this post‑selection experiment is
that it enables significant improvement of the error probability at a cost of only a
modest rejection probability.

The saturation of lifetimes in the most stringent post‑selection scheme (which
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Metric NP L d ≥ 3 d ≥ 2 d ≥ 1

Survival prob.
per cycle 1.0000 0.9985 0.9972 0.9907 0.9396

Improvement
of ΓGKP

1.00 1.10 1.68 2.44 6.31

Lifetime of
|+ Z⟩ (ms) 1.874± 0.004 2.107± 0.004 3.13± 0.02 4.60± 0.02 10.0± 0.6

Lifetime of
|+ Y ⟩ (ms) 1.147± 0.004 1.230± 0.005 1.93± 0.01 2.80± 0.02 9.4± 1.0

Lifetime of
|+ Z⟩ (cycles) 381± 1 427± 1 636± 4 934± 4 2000± 100

Lifetime of
|+ Z⟩ (cycles) 233± 1 250± 1 393± 3 567± 5 1900± 200

Table 6.2 | Post‑selection results. Top row labels the post‑selection schemes. NP
stands for “no post‑selection”; L stands for “leakage”; d ≥ N means post‑selection
that discards trajectories containing strings of N or more consecutive e outcomes
in the same‑quadrature cycles.

preserves only the all‑g trajectories) can be related to the followingmechanisms: (i)
Direct logical errors, which are undetectable in any QEC scheme. (ii) Misclassifi‑
cation of e as g (due to ancilla decay during the measurement), which means that
some of the all‑g trajectories that survived the post‑selection actually contained er‑
rors, and some of those errors might have been close to a logical operation instead
of the identity operation. (iii) The non‑orthogonality of logical states, which in our
case is not a limiting factor.

6.8 Wigner tomography of logical states

Tomography and its calibration

Wigner tomography is derived from the expression for theWigner functionW (α) =

(2/π)⟨Πα⟩, where Πα = D(α)ΠD†(α) is the displaced parity operator, and Π =

exp(iπa†a) is the photon number parity. The displaced parity operator is unitary
and can be measured with phase estimation. It is also hermitian, and hence its
eigenvalues are constrained to be ±1. Therefore, it is particularly convenient to
measure displaced parity by mapping it onto the qubit observable [116], which is
achieved in our systemwith a circuit shown in Fig. 6.8(a). The conditional rotation
gate CR(π) is realized with a delay of duration π/χ under the dispersive coupling
Hamiltonian, which amounts to approximately 10µs. Because of such long du‑
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Figure 6.8 | State reconstruction. (a) Wigner tomography experiment. (b) Cal‑
ibration experiment to extract α‑dependent contrast of the Wigner tomography.
This calibration relies on the assumption that the loss of contrast in tomography is
primarily due to incoherent errors during the parity mapping gate CR(π). (c) Re‑
sults of the qubit state tomography in the calibration experiment shown in (a). The
measurement of ⟨σx⟩ is fit to a quadratic function of |α| (black dashed line), and its
square root (black dotted line) is used as a Wigner function measurement contrast
in the state reconstruction. (d) Experimental Wigner function of the | + Z⟩ state
immediately after initialization. (e)Wigner function of the reconstructed state. (f)
Real part of the density matrix of the reconstructed state in the photon number ba‑
sis.
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ration, previous GKP experiments with similarly small χ chose to perform state
tomography using the characteristic function instead [42, 51]. However, the long
coherence of our system allows to measure Wigner function with reasonably high
fidelity.

We use several calibration techniques to improve the quality of the subsequent
state reconstruction from the tomographic data. First, to symmetrize the effect
of ancilla relaxation during the readout, in half of the phase estimation runs we
map +1 eigenvalue of Πα to the g outcome, and in another half to the e outcome.
This technique eliminates any finite offset inW (α), but maintains reduced contrast
due to ancilla relaxation and decoherence. Next, to calibrate the contrast reduc‑
tion, we perform an experiment with a similar circuit in which CR(π) is replaced
with [CR(π)]2 = I , see Fig. 6.8(b). We fit the result of this experiment, shown in
Fig. 6.8(c), to ⟨σx⟩ = 1 − p[α], where p[α] = η0 + η2|α|2 is the purity loss per CR(π)
gate. Under the assumption that contrast reduction in tomography is primarily due
to incoherent processes (ancilla relaxation and dephasing, and oscillator photon
loss), the inferred tomography contrast is P (α) =

√
1− p[α]. At α = 0, this inferred

contrast is equal to 0.8, which matches the measured contrast of the Wigner func‑
tion of vacuum in Fig. 4.1(c), justifying the assumptions of this calibration method.

The phase space points αi for Wigner tomography are chosen on a square 81×
81 grid in a complex plane restricted to |Re[αi]|, |Im[αi]| ≤ 3.2. We acquire 2400

shots per point in 6 separate acquisition time frames. Between the time frames we
perform system performance checks; data acquisition is put on hold if the spurious
resonance in T t

1 (n) reappears [see Fig. 4.3(d)]. A single state tomography dataset
consists of 15.7million shots, and takes a long time to acquire – from 6 hours in the
case ofT = 0 cycles, to 26hours in the case ofT = 800 cycles. Therefore, conclusions
derived from the analysis of tomography data apply to long‑time average system
performance.

State reconstruction

Tomographic data is used to produce a best guess for the densitymatrix of the state.
We parametrize the density matrix as ρ = C†C/Tr[C†C], where C = A + iB, and
A and B are real‑valued matrices. Such parametrization ensures that ρ is positive
semi‑definite with trace 1. We truncate the density matrix to dimension N = 32

in photon number basis. Coefficients of matrices A and B are optimized using the
least squares fit of theWigner tomography and contrast data, with the cost function
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given by

cost =
Nα∑
i=1

(
2

π
Tr[ρD(αi)ΠD

†(αi)] · P (αi)−W (αi)

)2

. (6.11)

An exampleWigner tomography of the |+Z⟩ grid state together with its recon‑
struction is shown in Fig. 6.8(d‑f). As will be described shortly, using the recon‑
structed density matrix we extract various parameters of the state: its purity, mean
photon number, and envelope size.

Evolution of logical states

We visualize the evolution of logical | + Z⟩ and | − Z⟩ grid states during the QEC
by taking Wigner tomography snapshots after 0, 100, 200, 400, and 800 cycles, with
results shown in Fig. 6.9.

The marginal of the Wigner function along momentum quadrature gives the
probability density of the oscillator position, shown in the third row of Fig. 6.9. The
| + Z⟩ and | − Z⟩ states have non‑overlapping support in position representation,
clearly observed in the data at T = 0 cycles. During the QEC process these basis
states mix under the logical Pauli channel, which is manifested in the appearance
of position peaks of the opposite state, until finally they become almost (but not
completely) indistinguishable after T = 800 cycles.

On the other hand, the marginal of the Wigner function along position quadra‑
ture gives the probability density of the oscillator momentum, shown in the last
row of Fig. 6.9. In the momentum representation, |+Z⟩ and | −Z⟩ states share the
same support, but have a different pattern of phases associated with the peaks of
the wavefunction. The phase information is discarded in the probability density
function, which looks identical for both states.

Spectral analysis of reconstructed states

Focusing on the time evolution of the | + Z⟩ state, we perform spectral decompo‑
sition of its reconstructed density matrices at T = 100, 200, 400, 800. We find that
the eigenvalues of the densitymatrix are arranged in pairs corresponding to the im‑
ages of this state and of its complement |−Z⟩ in different subspaces of the QEC, see
Fig. 6.10(a). In particular, we identify only two subspaces with a substantial pres‑
ence of the state during the QEC process: the code space C0, shown in Fig. 6.10(b),
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Figure 6.9 | Wigner tomography after QEC. Evolution of | + Z⟩ state (1st row)
and | − Z⟩ state (2nd row) is followed for 800 cycles. Color scheme is the same as
in Fig. 6.8, with the range scaled to [−0.63, 0.63]. Marginal of the Wigner function
along momentum (position) quadrature, which gives probability density of the os‑
cillator position (momentum), is shown in the 3rd (4th) row in blue for |+Z⟩ state,
and orange for | − Z⟩ state. The probability density is not normalized.
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Figure 6.10 | QEC subspaces. (a) Spectrum of the reconstructed density matrices
of the | + Z⟩ state evolving under the QEC process. The spectrum separates into
two pairs of eigenvalues: one pair corresponds to the code space C0, and another
pair corresponds to an error space obtained from the code space by application of
an error operator E. Dashed lines show the sum of the eigenvalues within each
pair, which gives the probability of occupying the code space and the error space.
(b) Wigner function of the projector Π0 onto the first pair of eigenvectors (taken
at T = 800), defining the code space. (c)Wigner function of the projector E Π0E

†

onto the second pair of eigenvectors, defining the error space. This error space
corresponds to C2 subspace in Chapter 6.2.

and the error space C2 corresponding to an error E that most closely resembles a†,
see Fig. 6.10(c) and Chapter 6.2.

While the QEC circuit imposes the structure of the error subspaces, as described
in Chapter 6.2, the properties of the “thermal” distribution across these subspaces
in the dynamical equilibrium is defined by the strength of the various error mech‑
anisms in our system as well as the rate at which these errors are corrected. The
probability of occupying the code space, given by the sum of the first two eigenval‑
ues, remains constant over time and equal to ⟨Π0⟩ = 0.825± 0.003, where error bar
represents the standard deviation with respect to different durations of the QEC
process. This value agrees well with an independent analysis in Chapter 6.5. Hav‑
ing only one relevant error subspace in the steady‑state distribution also qualita‑
tively agreeswith an observation in Chapter 6.5 that errors are rare. We believe that
other error subspaces are populated with probability < 1%, which is beyond the
resolution power of this method. Developing a more accurate and sample‑efficient
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Figure 6.11 | Analysis of | + Z⟩ evolution. (a) Expectation value F±
∆ of the state

projectors |±Z∆⟩⟨±Z∆| for a range of values of∆ and for different durations of the
QEC process. The fidelity F+

∆ decreases, while F−
∆ increases as a function of time,

as expected for a logical Pauli channel. The expectation value of the code projector
⟨Π∆⟩ = F+

∆ + F−
∆ (black dotted lines) remains nearly time‑independent for T > 0.

(b) Purity of the reconstructed state ρ and of its projection onto the code space ρ∆
as a function of time. (c) Average photon number as a function of time.

reconstruction technique for characterizing the distribution across the error spaces
is an important direction left for the future.

Extracting code envelope size

For each QEC duration T , the reconstructed density matrix is used to find the
fidelity of the experimental states to the family of finite‑energy codewords {| ±
Z∆⟩} parametrized by the envelope size ∆. For T > 0, we additionally displace
the target codewords by (0.08 − 0.12i)

√
π/2 to account for a small shift visible in

the tomography. Since these target states are pure, the fidelity is given by F+
∆ =

Tr
[
|+ Z∆⟩⟨+Z∆| ρ

]
andF−

∆ = Tr
[
| − Z∆⟩⟨−Z∆| ρ

]
. For experiments that start with

a preparation of | + Z⟩, these fidelities are shown in Fig. 6.11(a) for each QEC du‑
ration from the dataset in Fig. 6.9. Immediately after the initialization, the fidelity
F+

∆ is maximized for ∆ = 0.36, where it reaches 0.85. During the QEC process, F+
∆

gradually reduces while F−
∆ increases, consistent with the logical Pauli channel.

The sum ⟨Π∆⟩ = F−
∆+F

+
∆ , which is equal to the expectation value of the code projec‑

tor, remains nearly constant for T > 0. It ismaximized at∆ = 0.34 (9.4dB), where it
is equal to ⟨Π∆⟩ = 0.817±0.003. This value is close to ⟨Π0⟩ = 0.825±0.003 extracted
from the density matrix spectrum, which indicates that the code C0 stabilized in the
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experiment is indeed the one defined by the envelope operator exp(−∆2n) with
∆ = 0.34.

The purity of | + Z⟩ state is shown in Fig. 6.11(b). During the QEC process,
it reduces below 0.5, since the steady state contains a mixture of the codewords
with their images in the error spaces. However, the part of this mixed state that
resides within the code space should approach a purity of 0.5. To confirm that
this is the case, for every state ρ we define its projection onto the code space as
ρ∆ = Π∆ ρΠ∆/Tr[Π∆ ρΠ∆], where we only consider the code with the optimal
envelope ∆ = 0.34. As seen in Fig. 6.11(b), the purity of ρ∆ after initialization is
close to 1, and after hundreds of cycles it approaches 0.5, as expected for the logical
Pauli channel.

Lastly, in Fig. 6.11(c) we plot the evolution of the average photon number ⟨n⟩ =
Tr[a†a ρ] during the QEC process. The extracted steady‑state photon number is
⟨n⟩ = 4.67± 0.02.

6.9 Sensitivity to ancilla errors

Ancilla phase flips

Our QEC circuit is fault‑tolerant with respect to ancilla phase flips by design [53].
To see this, consider that if σz error happens during the ancilla readout, it would
have no effect because the readout projects the ancilla onto an eigenstate of σz.
Likewise, during the virtual rotation gate or the idle time the ancilla is nominally
in the |g⟩ state, which is an eigenstate of σz. Finally, the effect of σz errors on the
SBS unitary can be understood by propagating them through the circuit layers.
For example, if such an error happens during the big conditional displacement, it
is equivalent to changing the circuit parameters from β⃗ = lS × (i∆2/2, 1, i∆2/2) to
β⃗ = lS× (i∆2/2, 1,−i∆2/2). Since∆2 ≪ 1, this change is equivalent to a small error
that will be corrected in the following QEC cycles.

Ancilla bit flips

In contrast, ancilla bit flips can detrimentally affect the logical qubit in severalways.
If such an error happens during themiddle half of the big conditional displacement
of amplitude lS , it will with high probability generate a logical error. This mech‑
anism accounts for a significant fraction of logical errors in the experiment. For
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example, its contribution to the Pauli error probability pX = 1.8 × 10−3 (per QEC
cycle), is estimated to be∼ 0.5× 0.5× 0.5× (700ns/280µs) ≈ 0.3× 10−3, where the
factors of 0.5 account for (i) half of the superposition state being sensitive to ancilla
decay, (ii) half of the QEC cycle is devoted to position quadrature, (iii) half of the
big conditional displacement gate. In practice, the relaxation time of the ancilla is
likely degraded during the execution of the conditional displacement due to the
large number of intermediate photons in the oscillator, see [51] and evidence in
Chapter 6.10. Hence, this estimate provides an optimistic lower bound. Ancilla bit
flips can also create detrimental back‑action on the oscillator if they happen during
the readout time. Since readout outcome is used in a feedback loop to implement a
virtual rotation gate, misclassification of the ancilla state generates rotational errors
that the GKP code is not well suited to correct, with erroneous rotation angle dis‑
tributed in the range 0.0−0.6 radians. To estimate the contribution of such errors to
the logical error rate, consider that a rotation by ∼ ∆/(lS/2) ≈ 0.3 radians would
diminish the overlap of the blobs in the Wigner function; therefore, a significant
fraction of misclassification‑induced rotation errors cause large disturbance of the
stabilized code space. The transmon |e⟩ state is the most prone to misclassification.
Since readout fidelity of the |e⟩ state is close to 99%, and this outcome is generated
10%of the time, we estimate an additional∼ 0.5×10−3 contribution to logical error
probability per QEC cycle from this mechanism. The two contributions described
here account for half of the logical error probability pX , and the remaining half is
not yet well understood.

Transmon noise injection

To check the effect of ancilla errors on the logical performance in a controllable
way, we perform noise injection experiments that selectively increase the transmon
phase‑flip rate γ t

φ or bit‑flip rate γ t
1 , with the results shown in Fig. 6.12. With noise

injection, we are able to increase γ t
1 by a factor of 14 (spoiling T t

1 from 290µs to
20µs), and γ t

φ by a factor of 140 (spoiling T t
φ from 430µs to 3µs). Using linear fits in

the low‑error region, we extract the error sensitivities dγZ/dγt1 = 0.17, dγY /dγt1 =

0.25, dγZ/dγtφ = 0.0027, and dγY /dγtφ = 0.0050. The derived sensitivity of ΓGKP =

(γX + γY + γZ)/3 to ancilla phase flips is 65 times smaller than the sensitivity to
ancilla bit flips, confirming the qualitative arguments provided above. Mitigating
the effect of ancilla bit flips on the logical performance is one of the most important
future directions in grid‑code QEC.
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Figure 6.12 | Effect of ancilla errors. Logical error rates γZ and γY as a function
of physical error rates γtφ and γt1 of the ancilla transmon (γX is expected to behave
identically to γZ). Physical error rates are varied with noise injection. The error
sensitivities dγZ/dγt1 = 0.17, dγY /dγt1 = 0.25, dγZ/dγtφ = 0.0027, and dγY /dγ

t
φ =

0.0050 are extracted by linear fits in the low‑error region. The derived sensitivity
of ΓGKP = (γX + γY + γZ)/3 to phase flips is 65 times smaller than to bit flips.

Verifying noise injection

In the following, we explain how the noise injection experiments were conducted
and how we verified that the noise affects the system as intended, i.e. selectively
tunes γ t

φ or γ t
1 . We are able to achieve high degree of selectivity, with negligibly

small spurious effects. To spoil γ t
1 , we inject noise at the transmon frequency, and to

spoil γ t
φ, we inject noise at low frequency [117]. The baseband white noise with flat

spectral density up to 80MHz is sourced from an Agilent 33250A arbitrary wave‑
form generator. In the γ t

1 tuning experiment, it is upconverted to the qubit fre‑
quency using a double‑balanced mixer with an LO blue‑detuned by 30MHz from
the qubit frequency. After this pre‑processing, the noise is filtered and combined
with the qubit control line after the switch (in contrast to all control pulses, the
noise is not gated).

In Fig. 6.13(a), we inject resonant noise to tune γ t
1 . This noise couples to the

σx operator and therefore changes γ t
↓ and γ t

↑ symmetrically, which results in in‑
creased steady‑state population of the qubit, approaching 0.5 at the largest ap‑
plied noise power. Note that this noise also affects the dephasing rate γ t

2E , but
the changes in γ t

2E are explained by changes in γ t
1 : the extracted pure dephasing

rate γ t
φ = γ t

2E − γ t
1/2 remains independent of the noise power, as intended in this

experiment. The error bars on γ t
φ increase at large noise power, because this small

rate is extracted as a difference of two large rates. The oscillator dephasing rate γ c
2 is
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Figure 6.13 | Noise verification experiments. (a) Component error rates as a func‑
tion of the root mean square (RMS) voltage of the injected noise (at the generator
plane). Here, noise is up‑converted to the qubit frequency to increase γ t

1 . (b) Same
as in (a), but with the baseband noise that increases γ t

φ. (c) Readout infidelity of the
transmon |g⟩ and |e⟩ states in these two noise injection settings.

also affected by the noise, which is explained by the increased rate of qubit up‑ and
down‑transitions that dephase the oscillator through the dispersive coupling [45].
The pure dephasing rate γ c

φ = γ c
2 − γ c

1 /2 of the oscillator agrees reasonably well
with the prediction γ c,t

φ = n t
thγ

t
↓ derived from this mechanism (black dotted line).

The disagreement at high noise power is under investigation; it likely comes from
the breakdown of the simple formula for γ c,t

φ in the limit where n t
th is not small.

In Fig. 6.13(b), we inject baseband noise to tune γ t
φ. In addition to this desired ef‑

fect, within the same dynamic range of the noise we observe an undesired increase
of the qubit excited state population by a factor of 2 (data not shown), likely due to
the heating of the attenuators by the dissipated noise power. Since γ t

↑/γ
t
1 ≪ 1, the

qubit lifetime is not significantly affected by this heating. The lifetime and coher‑
ence of the oscillator also remain independent of the noise power. The increase of
the error bars on γ c

1 and γ c
2 with the noise power is related to strong degradation

of the fidelity of the transmon selective pulse used to read out the population of
the oscillator |0⟩ and |1⟩ states as described in Chapter 4.5. This pulse has a dura‑
tion of ∼ 20µs and it is directly sensitive to the transmon coherence; at the highest
injected noise power, where coherence time is spoiled down to 3µs, the fidelity of
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this selective pulse is only a few percent.
In Fig. 6.13(c), we show the effect of the noise on the readout fidelity of the trans‑

mon |g⟩ and |e⟩ states. In principle, the noise that induces phase flips (σz errors)
should not affect the readout of σz. However, due to the aforementioned heating
of the qubit, we observe a weak degradation of F (g)

r . On the other hand, noise at
the qubit frequency couples to σx and results in significant degradation of bothF (g)

r

and F (e)
r .

6.10 Long‑time system stability

With repetitivemeasurements of the lifetimes of {|0⟩, |1⟩} qubit, {|g⟩, |e⟩} qubit, and
error‑corrected GKP qubit, we investigate the stability of our quantum system over
time, with results of a week‑long scan shown in Fig. 6.14. We find that the {|0⟩, |1⟩}
qubit is the most stable, which we attribute to the fact that most of the electromag‑
netic field is stored in the vacuum of the cavity. In contrast, the {|g⟩, |e⟩} qubit
exhibits notable fluctuations of the |e⟩ state lifetime; such fluctuations are often ob‑
served in transmons [89, 118], and are typically attributed to two‑level defects in
the amorphous dielectric, although there are other mechanisms that could lead to
such fluctuations, and their source in our system is not yet understood.

We also find significant fluctuations of the lifetime of an error‑corrected GKP
qubit. Periods of relative stability are regularly interruptedwith sudden drops and
resurgences of performance, correlated with the appearance and disappearance of
a resonant feature in the T t

1 (n) dependence, see Fig. 6.14(c). The behavior of read‑
out infidelity of the |e⟩ state is also correlated with this feature, see Fig. 6.14(b). We
find that the correlation coefficient between the logical error rate and the readout
infidelity is r = 0.81. However, preliminary simulations indicate that degradation
of the readout fidelity alone is not sufficient to explain the collapses of the logi‑
cal performance. We therefore believe that the presence of the spurious resonance
affects not only the readout fidelity, but also the fidelity of the SBS unitary.

A plausible causal chain is the following: 1) for unknown reason, the spurious
degrees of freedom (defects) appear and disappear; 2) when the transmon |g⟩ ↔ |e⟩
transition frequency is resonant with the defect, their interaction strength is en‑
hanced, which reduces the lifetime of the |e⟩ state; 3) during the readout, the trans‑
mon is Stark‑shifted by the readout photons into resonance with the defects, which
increases the probability of readout errors; 4) when the transmon state is misclassi‑
fied, the virtual rotation gate is executed with an incorrect angle, inducing a phase‑



6.10 | Long‑time system stability 83

Figure 6.14 | Quantum system stability. (a) Lifetimes of Pauli Y and Z eigenstates
of {|0⟩, |1⟩} qubit, {|g⟩, |e⟩} qubit, and an error‑corrected GKP qubit. (b) Inverse
readout infidelity of the transmon |g⟩ and |e⟩ states. Logical lifetime is strongly
correlated with (1− F (e)

r )−1. (c) Transmon lifetime T t
1 as a function of the number

n of the steady‑state photons in the readout resonator. The dashed line denotes
the DAC amplitude used for the actual readout. The correlated degradation of the
system performance and appearance of a spurious resonance that degrades T t

1 (n)
around

√
n = 0.1 is indicated with purple arrows.
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space rotation error on the oscillator; 5) during the conditional displacement gates,
the transmon is also Stark‑shifted into resonance with the defects by the interme‑
diate photons of the cavity mode; 6) when transmon decay happens during the
big conditional displacement gate, it has a significant chance of inducing a logi‑
cal error. This proposed connection between spurious defects and fluctuations of
the logical performance could be verified with detailed system‑level simulations
that take into account time‑dependent Stark shift of the transmon and Stark‑shift‑
dependent degradation of T t

1 , which is left for the future analysis.
Apart from the stochastic fluctuations, we observe a systematic drift that war‑

rants periodic retraining of theQEC circuit. This drift can be seen by comparing the
initial and final data points of the scan in Fig. 6.14, where all the monitored physi‑
cal error sources are similar in magnitude, but the logical lifetime is reduced in the
final point as compared to the initial point. Due to this effect, the various datasets
reported in our work were acquired with different version of the QEC circuit that
were retrained every 1‑2 weeks.

6.11 Average channel fidelity

The average channel fidelity of a quantum channel E : ρ → E(ρ) to a target unitary
channel U : ρ→ UρU † is

F(E ,U) =
∫
dψ⟨ψ|U †E(|ψ⟩⟨ψ|)U |ψ⟩, (6.12)

where the integral is over the uniform measure on the state space, normalized so
that

∫
dψ = 1. Henceforth, we refer to this metric simply as fidelity.

To derive an equivalent but experimentally‑compatible expression, we make
use of the Pauli transfer matrix (PTM) representation of a channel

Rij[E ] =
1

2
Tr(σiE [σj]), (6.13)

where {σk, k = I,X, Y, Z} are Pauli matrices. This representation has several use‑
ful properties, e.g. that composition of channels corresponds to a product of their
PTMs [119]. In terms of the PTM, we have the following expression for fidelity:

F =
2Fe + 1

3
, Fe =

1

4
Tr
(
RT [U ]R[E ]

)
, (6.14)
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where Fe is often called the entanglement fidelity.
To benchmark a quantum error correction channel, we compare it to an identity

channel I : ρ→ ρwith Rij[I] = δij . In this case, Eq. (6.14) can be further simplified
to

F =
1

12

∑
P=X,Y,Z

(
Tr[P E(|+ P ⟩⟨+P |)]− Tr[P E(| − P ⟩⟨−P |)]

)
+

1

2
, (6.15)

where wemade use of the identities Tr[σPE(σP )] = Tr[P E(|+P ⟩⟨+P |)]−Tr[P E(|−
P ⟩⟨−P |)] for P ∈ {X,Y, Z}, and Tr(E [I]) = 2. The complete derivation of this
formula starting from Eq. (6.12) can be found in Ref. [91]. In experiment, the right‑
hand side of Eq. (6.15) ismeasured by preparing±1 Pauli eigenstates, passing them
through the channel E , and then measuring the corresponding Pauli operator, as
cartooned in Fig. 6.15(a). Such a procedure is applicable to an arbitrary duration t
of the channel E(t).

We focus on the comparison of three different qubits in our system: {|0⟩, |1⟩},
{|g⟩, |e⟩}, and an error‑corrected GKP qubit. The free evolution of the two passive
qubits is modeled using a composite amplitude damping and white‑noise dephas‑
ing channel, while the evolution of an error‑corrected GKP qubit is modeled using
a logical Pauli channel. Given these well‑justified assumptions on the error chan‑
nels, from Eq. (6.15) we find:

F{01}(t) =
1

6
e−γc

1t +
1

3
e−γc

2t +
1

2
, (6.16)

F{ge}(t) =
1

6
e−γt

1t +
1

3
e−γt

2Et +
1

2
, (6.17)

FGKP(t) =
1

6
e−γX t +

1

6
e−γY t +

1

6
e−γZ t +

1

2
. (6.18)

We show the time evolution of fidelity given by Eqs. (6.16−6.18) in Fig. 6.15(b),
using experimentally extracted decay rates at the highest QEC gain measured in
our experiment.

As seen above, in general the fidelity decays to its steady‑state value in a way
that cannot be characterized by a single time constant even in the simplest error
models such as Pauli noise or amplitude damping. Therefore, fitting the fidelity
decay to a single exponential is not strictly valid, although this heuristic approach
was adopted in the previous works on bosonic QEC [40, 41, 43]. To avoid such
an inconsistency, we consider the channel E acting for only a short time δt. Any
time dependence of the fidelity, even if it contains multiple exponentially decaying
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Figure 6.15 | Average channel fidelity. (a) Illustration of channel action on the
Pauli eigenstates. By linearity, the evolution of these six cardinal points is suffi‑
cient to predict the average effect across the whole Bloch sphere. (b) Expected time
evolution of average channel fidelity for three different qubits, calculated using ex‑
perimentally extracted lifetimes of Pauli eigenstates.

contributions, at short times is equivalent to a linear decay:

F(δt) = 1− 1

2
Γ δt, (6.19)

where Γ is an effective depolarization rate, and 1/Γ is the fidelity lifetime. For a
depolarizing channel Edep(ρ) = (1 − p)ρ + p I

2
with a depolarization probability

p = 1 − e−γt, we have Γ = γ, motivating the name and the coefficient 1/2 in Eq.
(6.19). For qubits considered here, the effective depolarization rates are:

Γ{01} =
2γ c

2 + γ c
1

3
, Γ{ge} =

2γ t
2E + γ t

1

3
, ΓGKP =

γX + γY + γZ
3

. (6.20)

We define the coherence gain G as an improvement of the effective depolariza‑
tion rate of an error‑corrected logical qubit over the best physical qubit in the same
system (with the break‑even point corresponding to G = 1). In a bosonic circuit
QED system, the latter is typically the {|0⟩, |1⟩} qubit, hence G = Γ{01}/ΓGKP. The
highest gain achieved in our experiment is Gmax = 2.27 ± 0.07. During a scan dis‑
cussed in Chapter 6.10, gain remained above break‑even 100% of this week‑long
time window, with a median of G = 2.0.

Lastly, we acknowledge that the decay constant of the average channel fidelity
is not the only relevant metric that we expect to be correlatedwith the future ability
of such systems to participate in quantum computations. Othermetrics, such as the
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SPAM fidelity and the fidelity of gates, are important as well, and we leave their
optimization and detailed characterization for future work.



7
Outlook
Experiments described in this thesis shed light onmany aspects of the grid code and
of theQEC in general, but they also generate newquestions and research directions.
In this final Chapter, we discuss the new opportunities that emerge from our work.

7.1 Complete characterization of a single logical qubit

The work in this thesis was devoted to developing a quantum error correction
scheme for a single logical qubit. We performed comprehensive characterization
of the logical lifetime of such a qubit, but other relevant aspects of its performance
were left out (due to limited time). The benchmarking of single‑qubit gates, prepa‑
ration of high‑fidelitymagic states, and optimal logical readout comprise an impor‑
tant extension of the current work. How can these aspects be addressed to bring to
completion the characterization of a single logical GKP qubit?

1. Logical gates are essential for quantum computation. In the ideal grid code,
gates from the Clifford group are “cheap” in a sense that they can be implemented
by time evolution under Hamiltonians that are quadratic polynomials of a and a†

[31]. However, such an approach is not suited for the finite‑energy code, as it is ag‑
nostic to the code envelope size. Close to the completion of this work, we realized
(credit goes to S. Singh) that envelope‑preserving single‑qubit gates can be seam‑
lessly integratedwith theQECprocess: they require splitting the SBS circuit in half,
which creates a Bell pair between the ancilla and the GKP qubit, then implement‑
ing the gate on the ancilla, and completing the SBS circuit. This gate teleportation
scheme is generically applicable, and a simplified non envelope‑preserving ver‑
sion of it was already demonstrated for the grid code in Ref. [42]. With transmon
ancilla used in our experiment, the cost of the required ancilla gate is negligible
compared to the rest of the control overhead. Hence, we expect that in our experi‑
mental system the fidelity of all single‑qubit gates done with such a method would
be comparable to the fidelity of a QEC cycle, i.e. it would be of the order 10−3. Gate
fidelity could be characterizing with randomized benchmarking (RB) [120, 121],
and reinforcement learning could be used to optimize this fidelity in situ similarly
to optimization of the QEC process, where the RB survival probability would serve
as a reward, see [83–86].

2. Clifford gates are not sufficient for universal quantum computing, which re‑

88
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quires an additional “magic” resource [92]. This could be a T gate, or an eigenstate
of this operator, the so‑called “magic state”. In our system, the T gates could be
implemented with a method discussed above and characterized using dedicated
benchmarking techniques [122, 123]. In addition, the probabilistic preparation of
high‑fidelity magic states could be achieved using post‑selection techniques de‑
scribed in Chapters 2.5 and 6.7.

3. The logical readout of a GKP qubit using phase estimation of the ideal‑code
Pauli operators is not adapted to the finite code envelope, resulting in limited read‑
out fidelity, as was alluded to in Chapter 2.3. This limitation was not critical for an
experiment described here, but it would become important for other information
processing tasks at the logical level. High‑fidelity readout of the finite‑energy grid
code could be achieved by explicitly adapting the readout circuit to the code size,
as was proposed in Refs. [53, 54, 88]. In practice, the QEC circuit could be trained
first to find the optimal code size, and then the readout circuit could be trained to
improve the logical readout fidelity.

4. Given the slowness of the error‑correcting dissipation, it is unavoidable that
the quantum state in the dynamical equilibriumwill occupy the code subspacewith
only a finite probability. It is therefore important that the logical operations (gates
and readout) have an equivalent action on all replicas of the code subspace. This
property of “transversality” needs to be understood, and there is already some evi‑
dence that the gates done in themanner described abovewill have such a property,
see Chapter 6.2.

7.2 Promising variations of the QEC protocol

In the future, we expect the development of novel schemes for protecting grid
states from decoherence; for example, superconducting circuits could be designed
to have the grid code as a degenerate ground state manifold [124]. However, the
approach developed in this thesis still leaves a lot of room for improvement. What
are the limitations of the QEC scheme utilized here, and how could they be ad‑
dressed to further advance the logical qubit performance?

1. Our QEC circuit is inherently fault‑tolerant with respect to ancilla phase
flips and non fault‑tolerant with respect to ancilla bit flips, as was demonstrated
in Chapter 6.9. Incorporating robustness against ancilla bit flips is crucial for re‑
ducing the logical error rate. In bosonic codes that use photon number parity as
one of the stabilizers, a similar problem is currently solved with path‑independent
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control [47, 96]. Extending this framework to the conditional displacement gate
is one way to achieve such a robustness. Another way is by using an ancilla with
suppressed bit‑flip rate, either based on yet‑to‑be‑invented dissipation engineering
with a transmon, or using an alternative ancilla, such as a cat qubit stabilized with
artificial dissipation [32, 79, 125] or Hamiltonian confinement [93, 126, 127].

2. In the current implementation of the ancilla reset, measurement‑based feed‑
back introduces a long latency, resulting in several detrimental effects associated
with ancilla excited state, see Chapters 4.3 and 6.3. While both the readout time
and the feedback latency could be reduced, a realistic limitation due to the signal
travel time and processing timewill limit the reset latency to∼ 200ns after an enor‑
mous engineering effort. An alternative path is to utilize dissipative reset [112–114],
which would lead to a fully autonomous stabilization and error correction of the
grid code, as was already demonstrated in trapped ions [54]. With a dispersively
coupled ancilla, discarding its state information into the uncontrolled environment
leads to rotation errors on the oscillator. The reset protocol in Ref. [112] dissipates
the ancilla to a |+⟩ state, which would effectively echo out the spurious rotation.
This effect is alsomitigated in readout techniques that rapidly swap the ancilla state
into a readout mode with negligible dispersive coupling to the oscillator [128, 129].
In addition, as our work has shown, it is important to address the leakage states
in the reset subroutine. A method from Ref. [114] or its generalization to include
higher leakage states is useful from this perspective.

3. An important problem in the field of superconducting circuits is the pres‑
ence of spurious degrees of freedom whose resonant interaction with the qubit re‑
duces its lifetime. The detrimental effect of such defects on our experiment was
demonstrated in Chapter 6.10. While a long‑term solution would seek to eliminate
these defects altogether, in a short term it would be interesting to try to manipulate
them in situ. Depending on the nature of these defects, they might be responsive
to quasistatic electric field [130], which could be harnessed as a control knob that
pushes the defects to a different spectral location. Such amanipulation promises to
improve the fidelity of the readout and of the conditional displacement gate done
with the current approach [51], as both these operations entail Stark shift and hence
require clean spectrum in the vicinity of the qubit frequency.
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7.3 Machine learning for quantum control

The problem of manipulating the state of a system with the available controls to
achieve a certain goal is ubiquitous in all areas of engineering. Analytical solutions
to such problems are available only in the simplest cases; their value consists in pro‑
viding insight, but not precision. In order to realize control of the highest quality,
numerical optimization methods are indispensable, and with the recent advances
in machine learning the class of problems that are solvable with numerical tools
has greatly expanded. The work in this thesis provides the first example of suc‑
cessfully applying machine learning to the problem of quantum error correction.
How else could we take advantage of this powerful framework in our attempts to
achieve high‑quality quantum control?

1. The techniques of dissipation engineering utilized here to implement QEC of
the grid code and cooling to the vacuum state can be extended to arbitrary quan‑
tum channels. In particular, it is possible with these techniques to realize QEC of
other bosonic codes, such as cat codes [32, 40] and binomial codes [33, 41], or stabi‑
lization of metrological resource states, such as squeezed states, grid sensor states
[131], and states with high degree of rotational symmetry [132]. Any of these ap‑
plications would involve numerical model‑based optimization (for example, see
Chapter 5.1 and Refs. [133, 134]), with subsequent model‑free optimization (for ex‑
ample, using reinforcement learning, see Chapeter 5.2 and Ref. [55]). The above
mentioned applications could be realized in the setup developed for this experi‑
ment following the same workflow as described in Chapter 2.

2. Implementing a low‑rank error correcting dissipation for the grid code al‑
lowed us to extend the logical lifetime beyond break‑even. In this work, the opti‑
mization of the QEC circuit was highly constrained, with a major restriction being
the channel rank: our scheme does not utilize the history of syndrome outcomes
to realize a more efficient real‑time correction of errors. Hence, constructing an
error‑correcting dissipation of high rank remains an important open problem. The
technical capabilities of our FPGA controller are sufficient to implement real‑time
branching in decision trees of depth ∼ 1− 5, but the main challenge is to find this
branching strategy in the first place. Reinforcement learning will likely be vital
for this application [55, 135]. While numerical evidence that grid code QEC could
benefit from utilizing the history of syndrome measurements already exists [136],
it is unclear if these results extend to our experimental system. This research direc‑
tionwould therefore require first proving the benefits of high‑rank error‑correcting
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dissipation in a simulation, and then porting it to a real experimental system.
3. An even more ambitions and far‑reaching program would involve the de‑

velopment of a machine learning framework for discovering not only the QEC
strategies for a given code, but also the optimal code in the first place, in a man‑
ner adapted to the control limitations and system imperfections. This problemwas
formulated and partially solved with reinforcement learning for simple examples
in Ref. [135], but turning this proof‑of‑principle solution into a practically useful
framework requires a lot of innovative ideas. The work described in this thesis can
also be considered as a rudimentary example of such a framework, because our RL
agent was able to learn the optimal size of the grid code. We extended the ideas of
Ref. [135] to a model‑free case, but eliminating further constraints while preserv‑
ing the practicality would likely take years of interdisciplinary efforts in machine
learning and quantum engineering.

4. Eliminating constraints would give the ML algorithms the freedom to ex‑
plore a larger space of control solutions. However, this would inevitably entail
slower learning. The state‑of‑the‑art ML frameworks in other fields that have al‑
ready undergone this transformation, such as robotics or natural language process‑
ing, require days or weeks of training on clusters of hundreds of GPUs. If quantum
engineering is to undergo this transformation aswell (which, inmy opinion, is only
a matter of time), low‑latency quantum‑classical communication loop is absolutely
requisite. The training time of several hours in our experiment, as described in
Chapter 5.2, was largely limited by the communication time, showing that even
the current‑day applications would greatly benefit from developing a faster inter‑
face.



A
Phase space representations
A.1 Characteristic function

– Definition:

C(α) = Tr[ρD(α)] (A.1)

– Normalization condition:

Tr[ρ] = C(0) = 1 (A.2)

– Symmetry property:

C(−α) = C∗(α) (A.3)

– Overlap of two quantum states:

Tr[ρ1ρ2] =
1

π

∫
d2αC1(α)C

∗
2(α) (A.4)

– Purity of a quantum state:

Tr[ρ2] =
1

π

∫
d2α |C(α)|2 (A.5)

A.2 Wigner function

– Definition:

W (α) = Tr[ρD(α)ΠD†(α)], Π = eiπa
†a (A.6)

– Normalization condition:

Tr[ρ] =
∫
d2αW (α) (A.7)
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– Overlap of two quantum states:

Tr[ρ1ρ2] = π

∫
d2αW1(α)W2(α) (A.8)

– Purity of a quantum state :

Tr[ρ2] = π

∫
d2α [W (α)]2 (A.9)

– Relation to characteristic function:

W (β) =
1

π2

∫
d2αC(α) eαβ

∗−α∗β (A.10)

C(α) =

∫
d2β W (β) eαβ

∗−α∗β (A.11)
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