Home » Articles posted by Pam Patterson

Author Archives: Pam Patterson

Variable TC Hot-Electron Mixers

I. Siddiqi

Superconducting hot-electron bolometers used in astronomy for heterodyne detection at THz frequencies are currently limited in sensitivity by fluctuations in electron temperature. A reduction in critical temperature (TC) increases sensitivity but also increases the susceptibility to saturation from background photons. Using various superconductors, we have verified the reduction in thermal fluctuation noise achieved by lowering TC, and have characterized the different saturation effects which limit mixer sensitivity. Using a bilayer material system (Nb-Au) which uses the superconductor-normal metal proximity effect to tune TC, we have demonstrated devices which should achieve an optimum balance between sensitivity and saturation.

Quantum information

Members

















Principal Investigator

Michel H. Devoret

Permanent Staff

Luigi Frunzio, senior research scientist

Giselle Maillet, administrative associate

Theresa Evangeliste, administrative assistant

Nuch Graves, program coordinator

Other Applied Physics Staff

Maria Rao, administrative assistant

Micheal Rooks, YINQE director of facilties

Yong Sun, cleanroom director

Visiting Scientists

Mazyar Mirrahimi

Postdocs

Rodrigo Cortiñas

Valla Fatemi

Gangqiang Liu

Ioannis Tsioutsios

Graduate Students

Tom Connolly

Wei Dai

Spencer Diamond

Andy Ding

Alec Eickbusch

Nick Frattini

Max Hays

Vidul Joshi

Akshay Koottandavida

Pavel Kurilovich

Vladimir Sivak

Jaya Venkatraman

Zhixin Wang

Xu Xiao

Alumni

Baleegh Abdo (postdoc)

Nicolas Bergeal (postdoc)

Etienne Boaknin (postdoc)

Markus Brink (postdoc)

Philippe Campagne-Ibarcq (postdoc)

Simon Fissette (undergrad)

Alvin Gao (undergrad)

Kurtis Geerlings (student)

Alexander Grimm (postdoc)

Michael Hatridge (postdoc)

Benjamin Huard (visiting scientist)

Philippe Hyafil (postdoc)

Archana Kamal (student)

Angela Kou (postdoc)

Gijs de Lange (postdoc)

Zaki Leghtas (postdoc)

Andrew Lingenfelter (undergrad)

Yehan Liu (student)

Vladimir Manucharyan (student)

Adam Marblestone (undergrad)

Nick Masluk (student)

Zlatko Minev (student)

Shantanu Mundhada (student)

Anirudh Narla (student)

Chris Pang (undergrad)

Frederic Pierre (postdoc)

Ioan Pop (postdoc)

Chad Rigetti (student)

Flavius Schackert (student)

Shyam Shankar (senior research scientist)

Kyle Serniak (student)

Irfan Siddiqi (postdoc)

Katrina Sliwa (student)

Clarke Smith (student)

Steven Touzard (student)

Rajamani Vijayaraghavan (student)

Uri Vool (student)

Chris Wilson (postdoc)

Evan Zalys-Geller (student)

William Zeng (undergrad)


Michel H. Devoret
phone : 203-432-4273

Michel Devoret graduated from Ecole Nationale Superieure des Telecommunications in Paris in 1975 and started graduate work in molecular quantum physics at the University of Orsay. He then joined Professor Anatole Abragam’s laboratory in CEA-Saclay to work on NMR in solid hydrogen, and received his PhD from Paris University in 1982. He spent two post-doctoral years working on macroscopic quantum tunneling with John Clarke’s laboratory at the University of California, Berkeley. He pursued this research on quantum mechanical electronics upon his return to Saclay, starting his own research group with Daniel Esteve and Cristian Urbina. The main achievements of the “quantronics group” were in this period the measurement of the traversal time of tunneling, the invention of the single electron pump (now the basis of a new standard of capacitance), the first measurement of the effect of atomic valence on the conductance of a single atom, and the first observation of the Ramsey fringes of a superconducting artificial atom (quantronium). He became director of research at the Commissariat a l’Energie Atomique (CEA) at Saclay. In 2007, Michel has been appointed to the College de France, where he taught until 2012. He is a member of the American Academy of Arts and Sciences (2003) and a member of  the French Academy of Sciences (2008). Michel has received the Ampere Prize of the French Academy of Science (together with Daniel Esteve, 1991), the Descartes-Huygens Prize of the Royal Academy of Science of the Netherlands (1996) and the Europhysics-Agilent Prize of the European Physical Society (together with Daniel Esteve, Hans Mooij and Yasunobu Nakamura, 2004). He is also a recipient of the John Stewart Bell Prize, which he received jointly with Rob Schoelkopf in 2013. In 2014, he has been awarded, together with John Martinis and Rob Schoelkopf, the Fritz London Memorial Prize. He received the Olli Lounaasma Prize in 2016.

Currently the F. W. Beinecke Professor of Applied Physics at Yale University — which he joined in 2002 — he focuses his research on experimental solid state physics with emphasis on quantum mechanical electronics (a.k.a. “quantronics”) for quantum information processing. In this new type of electronics, electrical collective degrees of freedom like currents and voltages behave quantum mechanically. Such mesoscopic phenomena are particularly important in quantum circuits based on Josephson junctions, which is his main research goal. He currently focuses on the new phenomena of fault-tolerant quantum operations and remote entanglement.


Luigi Frunzio
phone : 203-432-4268

Luigi received his Masters in Physics at Federico II University in Naples, Italy, earning 110/110 Cum Laude. His thesis studied the effects of the intrinsic fluctuations in current biased Josephson tunnel junctions, and his preliminary work took place at the Superconductivity Department of the Instituto di Cibernetica of the CNR under the supervision of Professors Arturo Tagliacozzo and Roberto Cristiano. He also has a PhD from Orsay University. Luigi is currently a Senior Research Scientist at the Department of Applied Physics at Yale University. He works jointly with Prof. Devoret and Prof. Schoelkopf on experiments involving superconducting qubits. His curriculum vitae is available here


Giselle Maillet Administrative Associate

Yale University, Applied Physics
15 Prospect Street / PO Box 208284
Becton Center 401
New Haven, CT 06520-8284
phone : 203-432-9654

 

 

 


Theresa Evangeliste Administrative Assistant

Yale University, Applied Physics
15 Prospect Street / PO Box 208284
Becton Center 401
New Haven, CT 06520-8284
phone : 203-432-2210

 

 

 


Nuch Graves Program Coordinator/Financial Analyst

Yale University, Applied Physics
15 Prospect Street / PO Box 208284
Becton Center 401
New Haven, CT 06520-8284
phone : 203-432-9610


Maria Rao Administrative Assistant
Yale University, Applied Physics
15 Prospect Street / PO Box 208284
Becton Center 401
New Haven, CT 06520-8284
phone : 203-432-4273

Maria lives in Branford, CT and has worked at Yale since 2004. She comes from Bayer Pharmaceutical Corp. with solid corporate experience. She has a teaching degree in foreign languages (Italian, French, and Spanish) from Southern Connecticut State University. She is our awesome administrative assistant. Young, energetic, and dynamic, she gets us all the tools and research equipment we want and takes care of all the paperwork involved – with a smile that’s always appreciated.


Rodrigo Cortiñas

Rodrigo was born and raised in Lomas de Zamora, a suburb of the Argentine capital. He studied Physics at the University of Buenos Aires, where his final undergrad project was on single optical photon quantum optics in the LOFT lab (Claudio Iemmi). He then moved to Paris, France to work in the cavity QED team of the LKB lab (Serge Haroche, Jean-Michel Raimond, and Michel Brune) on the development of Rydberg atoms technology for quantum simulation. They were the first team to laser trap circular Rydberg atoms (and for >10ms!), an achievement for which Rodrigo was awarded a PhD in atomic physics from the ENS (PSL). He then moved to Yale and joined Qlab to work on quantum error correction in circuit QED. Rodrigo is interested in the fundamental aspects of quantum mechanics and how to harvest them.


Valla Fatemi

Valla was born in Atlanta, GA. After studying applied physics at Columbia University, he completed a PhD in physics at the Massachusetts Institute of Technology. His thesis work was on the study of atomically layered topological insulators like monolayer tungsten ditelluride, and he also worked on van der Waals heterostructures like twisted bilayer graphene. He joined Qlab in the summer of 2018 to work on microwave spectroscopy and manipulation of Andreev bound states as well as experiments to understand quasiparticle dynamics in transmon qubits.


Gangqiang Liu

Gangqiang was born and grew up in the beautiful countryside of Chengdu, China. In 2008, he received his BA in physics from Wuhan University in Wuhan, China. In 2015, he received his Ph.D in physics for studying Bose-Einstein condensation of quasi-particles in semiconductor microcavities under the supervision of Prof. David Snoke at the University of Pittsburgh. From 2015 to 2018, he worked as a postdoc in Prof. Michael Hatridge’s lab at Pittsburgh, where he studied Josephson parametric amplifiers and qubit readout with two-mode squeezed light. He joined Qlab in December of 2018 to work on directional parametric amplifiers.


Ioannis Tsioutsios

Ioannis Tsioutsios was born and grew up in Athens, Greece. He studied applied physics and mathematics at the National Technical University of Athens (NTUA), Greece, and electrical and electronics engineering at Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. He completed his Ph.D in physics in the group of Prof. Adrian Bachtold at the Institute of Photonic Sciences (ICFO) in Barcelona, Spain, where he investigated the properties of nanomechanical resonators based on graphene and carbon nanotubes. He joined Qulab as a postdoctoral associate in August of 2017 and he is currently working on improving the energy relaxation properties of superconducting qubits using novel nanofabrication technologies.


Nick Frattini

Nick grew up in Los Altos, California. He graduated in 2015 from UC Berkeley with a BS in Engineering Physics and in Electrical Engineering and Computer Science. While there, he worked in Irfan Siddiqi’s Quantum Nanonelectronics Laboratory on microwave superconducting circuits. Since joining Qulab in the summer of 2015, he has been investigating novel quantum-limited parametric amplifiers.


Wei Dai

Wei was born in Shanghai, China. He received his undergraduate degree in physics from Tsinghua University in Beijing. At Tsinghua, he worked with Luyan Sun on superconducting microwave cavity design and Purcell filtering of cQED systems. During the summer of 2017, he worked on in-fridge infrared shielding during an internship with Adrian Lupascu at University of Waterloo. Wei joined Qulab in the fall of 2018. His current study focuses on quantum-limited parametric amplifiers based on SNAILs.


Spencer Diamond

Spencer was born in Amherst, Massachusetts. In 2014, he received his BA in Physics from Dartmouth College. He taught high school Physics for three years before beginning his PhD studies and joining QuLab in the fall of 2017. He currently works on experiments probing quasiparticle dynamics in transmon qubits.


Alec Eickbusch

Alec grew up in Austin, Texas. He attended the University of Texas at Austin where he received B.S. degrees in Electrical Engineering and Physics. While at UT, Alec worked in the Raizen Lab studying graphene oxide. In summer 2017 Alec joined Qulab, and he is currently working on quantum error correction for superconducting cavities.


Max Hays

Max was born in Asheville, North Carolina. He received his BS in Physics from the University of North Carolina at Chapel Hill, and joined QuLab in the fall of 2014. His current works focuses on using circuit QED to probe mesoscopic superconductors. This includes the detection and manipulation of Andreev bound states in semiconducting nanowire Josephson junctions, and the investigation of quasiparticle dynamics in transmon qubits.


Akshay Koottandavida

Akshay was born in Kerala, India. He received his Bachelors and Masters in Physics from UM DAE- CEBS. He worked on nonreciprocal optomechanical devices using superconducting circuits for his masters thesis under Tobias Kippenberg at EPFL. He also worked on topological phenomena in open quantum chains under Franco Nori at RIKEN, Tokyo and before that he interned at Wolfram Research. Akshay joined QLab in the fall of 2018. His current work focuses on quantum error correction using pair-cats.


Vladimir Sivak

Vladimir was born in western Ukraine and finished Ukrainian Physics and Mathematic Lyceum in Kiev receiving a silver medal at International Physics Olympiad in 2012. He studied theoretical physics in Russia at Moscow Institute of Physics and Technology and graduated in 2016. Vladimir joined Qulab in the summer of 2017 and currently works on SNAIL parametric amplifier.


Jaya Venkatraman

Jaya grew up in Bangalore, India. In 2016, she received her BS degree in Physics from Indian Institute of Technology, Kanpur. While there, she worked with Anand Kumar Jha on characterizing spatial coherence in spontaneous parametric down conversion. During an internship with Alexandre Blais at Sherbrooke in 2015, she worked on using optimal control theory for fast resonator reset. She joined Qulab in the fall of 2016 and is currently working on theory and experiments to investigate dynamical instabilities that occur in driven superconducting circuits.


Zhixin Wang

Zhixin was born and raised in China. He received his Bachelor degree in Microelectronics from Tsinghua University at Beijing in 2015. While at Tsinghua, he studied quantum optics and quantum information theory, and later worked on growth and characterization of topological insulators. In Fall 2013, he was an UCEAP exchange student at University of California, Santa Barbra, pursued non-degree study in Physics, and investigated quantum transport in superconductor-semiconductor mesoscopic heterostructures. In the summer of 2014, he was a visiting student in research at the Department of Applied Physics, Yale University, working on theoretical optics, and attempting the broadband generalization of coherent perfect absorbers (CPA). Since joining Qlab in the fall of 2015, he has been investigating superconductor-semiconductor nanowire hybrid quantum circuits and cold microwave cavity attenuators.


Xu Xiao

Xu grew up in Beijing, China. He received his B.A. degree in physics from the University of Chicago in 2014. While at UChicago, he worked with David Schuster and David Awschalom on NV-centers. He joined Qulab in the summer of 2017. His current work involves investigating the instabilities of driven transmons by modifying the circuit’s phase potential with an inductive shunt.


Publications


2020

Quantum error correction of a qubit encoded in grid states of an oscillator (PDF)
P. Campagne-Ibarcq, A. Eickbusch, S. Touzard, E. Zalys-Geller, N.E. Frattini, V.V. Sivak, P. Reinhold, S. Puri, S. Shankar, R.J. Schoelkopf, L. Frunzio, M. Mirrahimi, M.H. Devoret
Nature 584, 368–372 (2020)

Stabilization and operation of a Kerr-cat qubit (PDF)
A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S. Touzard, M. Mirrahimi, Steven M. Girvin, S. Shankar, M. H. Devoret
Nature 584, 205–209 (2020)

Continuous monitoring of a trapped, superconducting spin (PDF)
M. Hays, V. Fatemi, K. Serniak, D. Bouman, S. Diamond, G. de Lange, P. Krogstrup, J. Nygård, A. Geresdi, M. H. Devoret
Nature Physics (2020)

Free-standing silicon shadow masks for transmon qubit fabrication (PDF)
I. Tsioutsios, K. Serniak, S. Diamond, V. V. Sivak, Z. Wang, S. Shankar, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret
AIP Advances 10, 065120 (2020)

Error-detected state transfer and entanglement in a superconducting quantum network (PDF)
L. D. Burkhart, J. Teoh, Y. Zhang, C. J. Axline, L. Frunzio, M. H. Devoret, L. Jiang, S. M. Girvin, R. J. Schoelkopf
arXiv:2004.06168 (2020)

Josephson Array Mode Parametric Amplifier (PDF)
V. V. Sivak, S. Shankar, G. Liu, J. Aumentado, M. H. Devoret
Phys. Rev. Applied 13, 024014 (2020)

Heralded Generation and Detection of Entangled Microwave-Optical Photon Pairs (PDF)
C. Zhong, Z. Wang, C. Zou, M. Zhang, X. Han, W. Fu, M. Xu, S. Shankar, M. H. Devoret, H. X. Tang, L. Jiang
Phys. Rev. Lett. 124, 010511 (2020)


back

2019

Experimental Implementation of a Raman-Assisted Eight-Wave Mixing Process (PDF)
S.O. Mundhada, A. Grimm, J. Venkatraman, Z.K. Minev, S. Touzard, N.E. Frattini, V.V. Sivak, K. Sliwa, P. Reinhold, S. Shankar, M. Mirrahimi, M.H. Devoret
Phys. Rev. Applied 12, 054051 (2019)

Photon-assisted charge-parity jumps in a superconducting qubit (PDF)
M. Houzet, K. Serniak, G. Catelani, M. H. Devoret, L. I. Glazman
Phys. Rev. Lett. 123, 107704 (2019)

Direct Dispersive Monitoring of Charge Parity in Offset-Charge-Sensitive Transmons (PDF)
K. Serniak, S. Diamond, M. Hays, V. Fatemi, S. Shankar, L. Frunzio, R. J. Schoelkopf, M. H. Devoret
Phys. Rev. Applied 12, 014052 (2019)

Kerr-free three-wave mixing in superconducting quantum circuits (PDF)
V. V. Sivak, N. E. Frattini, V. R. Joshi, A. Lingenfelter, S. Shankar, M. H. Devoret
Phys. Rev. Applied 11, 054060 (2019)

To catch and reverse a quantum jump mid-flight (PDF)
Z.K. Minev, S.O. Mundhada, S. Shankar, P. Reinhold, R. Gutierrez-Jauregui, R.J. Schoelkopf, M. Mirrahimi, H.J. Carmichael, M.H. Devoret
Nature 570, 200-204 (2019)

Gated Conditional Displacement Readout of Superconducting Qubits (PDF)
S. Touzard, A. Kou, N. E. Frattini, V. V. Sivak, S. Puri, A. Grimm, L. Frunzio, S. Shankar, M. H. Devoret
Phys. Rev. Lett. 122, 080502 (2019)

Entangling Bosonic Modes via an Engineered Exchange Interaction (PDF)
Y. Gao, B. Lester, K. Chou, L. Frunzio, M. Devoret, L. Jiang, S. Girvin, R. Schoelkopf
Nature 566, 509-512 (2019)

Cavity Attenuators for Superconducting Qubits (PDF)
Z. Wang, S. Shankar, Z.K. Minev, P. Campagne-Ibarcq, A. Narla, M.H. Devoret
Phys. Rev. Applied 11, 014031 (2019)

Pair-cat codes: autonomous error-correction with low-order nonlinearity (PDF)
V. V. Albert, S. O. Mundhada, A. Grimm, S. Touzard, M. H. Devoret, L. Jiang
Quantum Sci. Technol. 4, 3 (2019)


back

2018

Deterministic teleportation of a quantum gate between two logical qubits (PDF)
K.S. Chou, J.Z. Blumoff, C.S. Wang, P.C. Reinhold, C.J. Axline, Y.Y. Gao, L. Frunzio, M.H. Devoret, L. Jiang, R. Schoelkopf
Nature 561, 368–373 (2018)

Optimizing the nonlinearity and dissipation of a SNAIL Parametric Amplifier for dynamic range (PDF)
N. E. Frattini, V. V. Sivak, A. Lingenfelter, S. Shankar, M. H. Devoret
Phys. Rev. Applied 10, 054020 (2018)

Hot nonequilibrium quasiparticles in transmon qubits (PDF)
K. Serniak, M. Hays, G. de Lange, S. Diamond, S. Shankar, L. D. Burkhart, L. Frunzio, M. Houzet, M. H. Devoret
Phys. Rev. Lett. 121, 157701 (2018)

On-demand quantum state transfer and entanglement between remote microwave cavity memories (PDF)
C. Axline, L. Burkhart, W. Pfaff, M. Zhang, K. Chou, P. Campagne-Ibarcq, P. Reinhold, L. Frunzio, S.M. Girvin, L. Jiang, M.H. Devoret, R.J. Schoelkopf
Nature Physics 14, 705–710 (2018)

Deterministic Remote Entanglement of Superconducting Circuits through Microwave Two-Photon Transitions (PDF)
P. Campagne-Ibarcq, E. Zalys-Geller, A. Narla, S. Shankar, P. Reinhold, L. D. Burkhart, C. J. Axline, W. Pfaff, L. Frunzio, R. J. Schoelkopf, M. H. Devoret
Phys. Rev. Lett. 120, 200501 (2018)

Coherent oscillations in a quantum manifold stabilized by dissipation (PDF)
S. Touzard, A. Grimm, Z. Leghtas, S.O. Mundhada, P. Reinhold, R. Heeres, C. Axline, M. Reagor, K. Chou, J. Blumoff, K.M. Sliwa, S. Shankar, L. Frunzio, R.J. Schoelkopf, M. Mirrahimi, M.H. Devoret
Phys. Rev. X 8, 021005 (2018)

Driving forbidden transitions in the fluxonium artificial atom (PDF)
U. Vool, A. Kou, W.C. Smith, N.E. Frattini, K. Serniak, P. Reinhold, I.M. Pop, S. Shankar, L. Frunzio, S.M. Girvin, M.H. Devoret
Phys. Rev. Applied 9, 054046 (2018)

Direct Microwave Measurement of Andreev-Bound-State Dynamics in a Semiconductor-Nanowire Josephson Junction (PDF)
M. Hays, G. de Lange, K. Serniak, D.J. van Woerkom, D. Bouman, P. Krogstrup, J. Nygård, A. Geresdi, M.H. Devoret
Phys. Rev. Lett. 121, 047001 (2018)


back

2017

Introduction to quantum electromagnetic circuits (PDF)
U. Vool and M.H. Devoret
Int. J. Circ. Theor. Appl. 45, 897 (2017)

Implementing a Universal Gate Set on a Logical Qubit Encoded in an Oscillator (PDF)
R. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, R. J. Schoelkopf
Nat Commun 8, 94 (2017)

Controlled release of multiphoton quantum states from a microwave cavity memory (PDF)
W. Pfaff, C. Axline, L.D. Burkhart, U. Vool, P. Reinhold, L. Frunzio, L. Jiang, M. H. Devoret, R. J. Schoelkopf
Nature Physics 13, 882–887 (2017)

A fluxonium-based artificial molecule with a tunable magnetic moment (PDF)
A. Kou, W. C. Smith, U. Vool, R. T. Brierley, H. Meier, L. Frunzio, S. M. Girvin, L. I. Glazman, M. H. Devoret
Phys. Rev. X 7, 031037 (2017)

Degeneracy-preserving quantum non-demolition measurement of parity-type observables for cat-qubits (PDF)
J. Cohen, W. C. Smith, M. H. Devoret, M. Mirrahimi
Phys. Rev. Lett. 119, 060503 (2017)

3-Wave Mixing Josephson Dipole Element (PDF)
N. E. Frattini, U. Vool, S. Shankar, A. Narla, K. M. Sliwa, M. H. Devoret
Appl. Phys. Lett. 110, 222603 (2017)

Generating higher order quantum dissipation from lower order parametric processes (PDF)
S. O. Mundhada, A. Grimm, S. Touzard, U. Vool, S. Shankar, M. H. Devoret, M. Mirrahimi
Quantum Sci. Technol. 2, 024005 (2017)

Quantum Channel Construction with Circuit Quantum Electrodynamics (PDF)
C. Shen, K. Noh, V. Albert, S. Krastanov, M. H. Devoret, R. J. Schoelkopf, S. M. Girvin, L. Jiang
Phys. Rev. B 95, 134501 (2017)


back

2016

Quantization of inductively-shunted superconducting circuits (PDF)
W. C. Smith, A. Kou, U. Vool, I. M. Pop, L. Frunzio, R. J. Schoelkopf, M. H. Devoret
Phys. Rev. B, 94, 144507 (2016)

Continuous Quantum Nondemolition Measurement of the Transverse Component of a Qubit (PDF)
U. Vool, S. Shankar, S. O. Mundhada, N. Ofek, A. Narla, K. Sliwa, E. Zalys-Geller, Y. Liu, L. Frunzio, R. J. Schoelkopf, S. M. Girvin, M. H. Devoret
Phys. Rev. Lett. 117, 133601 (2016)

Introduction to Quantum-limited Parametric Amplification of Quantum Signals with Josephson Circuits (PDF)
M. H. Devoret and A. Roy
C. R. Physique 17 (2016) 740–755

Robust Concurrent Remote Entanglement Between Two Superconducting Qubits (PDF)
A. Narla, S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, E. Zalys-Geller, S. O. Mundhada, W. Pfaff, L. Frunzio, R. J. Schoelkopf, M. H. Devoret
Phys. Rev. X 6, 031036 (2016)

Planar Multilayer Circuit Quantum Electrodynamics (PDF)
Z. K. Minev, K. Serniak, I.M. Pop, Z. Leghtas, K. Sliwa, M. Hatridge, L. Frunzio, R. J. Schoelkopf, M. H. Devoret
Phys. Rev. Applied 5, 044021 (2016)

Multilayer Microwave Integrated Quantum Circuits for Scalable Quantum Computing (PDF)
T. Brecht, W. Pfaff, C. Wang, Y. Chu, L. Frunzio, M. H. Devoret, R. J. Schoelkopf
NPJ Quantum Information 2, 16002 (2016)

Theory of remote entanglement via quantum-limited phase-preserving amplification (PDF)
M. Silveri, E. Zalys-Geller, M. Hatridge, Z. Leghtas, M. H. Devoret, S. M. Girvin
Phys. Rev. A 93, 062310 (2016)

Comparing and Combining Measurement-Based and Driven-Dissipative Entanglement Stabilization (PDF)
Y. Liu, S. Shankar, N. Ofek, M. Hatridge, A. Narla, K. M. Sliwa, L. Frunzio, R. J. Schoelkopf, M. H. Devoret
Phys. Rev. X 6, 011022 (2016)

A Quantum Memory with Near-millisecond Coherence in Circuit QED (PDF)
M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou, M. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, R. J. Schoelkopf
Phys. Rev. B 94, 014506 (2016)


back

2015

Remote Entanglement by Coherent Multiplication of Concurrent Quantum Signals (PDF)
A. Roy, L. Jiang, A. D. Stone, M. H. Devoret
Phys. Rev. Lett. 115, 150503 (2015)

Surface Participation and Dielectric Loss in Superconducting Qubits (PDF)
C. Wang, C. Axline, Y. Gao, T. Brecht, L. Frunzio, M. H. Devoret, R. J. Schoelkopf
Appl. Phys. Lett. 107, 162601 (2015)

Demonstration of Micromachined Superconducting Cavities (PDF)
T. Brecht, M. Reagor, Y. Chu, W. Pfaff, C. Wang, L. Frunzio, M. H. Devoret, R. J. Schoelkopf
Appl. Phys. Lett. 107, 192603 (2015)

Characterizing Entanglement of An Artificial Atom and a Cavity Cat State with Bell’s Inequality (PDF)
B. Vlastakis, A. Petrenko, N. Ofek, L. Sun, Z. Leghtas, K. Sliwa, M. Hatridge, J. Blumoff, L. Frunzio, M. Mirrahimi, L. Jiang, M. H. Devoret, and R. J. Schoelkopf
Nat Commun, 6, (2015); DOI 10.1038/ncomms9970

Single-Photon Resolved Cross-Kerr Interaction for Autonomous Stabilization of Photon-number States (PDF)
E. T. Holland, B. Vlastakis, R. W. Heeres, M. J. Reagor, U. Vool, Z. Leghtas, L. Frunzio, G. Kirchmair, M. H. Devoret, M. Mirrahimi, R. J. Schoelkopf
Phys. Rev. Lett. 115, 180501 (2015)

Continuous generation and stabilization of mesoscopic field superposition states in a quantum circuit (PDF)
A. Roy, Z. Leghtas, A. D. Stone, M. H. Devoret, M. Mirrahimi
Phys. Rev. A 91, 013810 (2015)

The Reconfigurable Josephson Circulator/Directional Amplifier (PDF)
K. M. Sliwa, M. Hatridge, A. Narla, S. Shankar, L. Frunzio, R. J. Schoelkopf, M. H. Devoret
Phys. Rev. X 5, 041020 (2015)

Confining the state of light to a quantum manifold by engineered two-photon loss (PDF)
Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A. Petrenko, K. Sliwa, A. Narla, S. Shankar, M. Hatridge, M. Reagor, L. Frunzio, R. J. Schoelkopf, M. Mirrahimi, M. H. Devoret
Science 347, 853-857 (2015) (abstract, reprint, fulltext)


back

2014

Measurement and Control of Quasiparticle Dynamics in a Superconducting Qubit (PDF)
C. Wang, Y.Y. Gao, I.M. Pop, U. Vool, C. Axline, T. Brecht, R.W. Heeres, L. Frunzio, M.H. Devoret, G. Catelani, L.I. Glazman, R.J. Schoelkopf
Nat Commun, 5, (2014); DOI 10.1038/ncomms6836

Tracking Photon Jumps with Repeated Quantum Non-demolition Parity Measurements (PDF)
L. Sun, A. Petrenko, Z. Leghtas, B. Vlastakis, G. Kirchmair, K.M. Sliwa, A. Narla, M. Hatridge, S. Shankar, J. Blumoff, L. Frunzio, M. Mirrahimi, M.H. Devoret, R.J. Schoelkopf
Nature, 511, 444-+ (2014); DOI 10.1038/nature13436

Asymmetric Frequency Conversion in Nonlinear Systems Driven by a Biharmonic Pump (PDF)
A. Kamal, A. Roy, J. Clarke, M.H. Devoret,
Phys Rev Lett, 113, (2014); DOI 10.1103/PhysRevLett.113.247003

Non-Poissonian Quantum Jumps of a Fluxonium Qubit due to Quasiparticle Excitations (PDF)
U. Vool, I. M. Pop, K. Sliwa, B. Abdo, C. Wang, T. Brecht, Y. Y. Gao, S. Shankar, M. Hatridge, G. Catelani, M. Mirrahimi, L. Frunzio, R. J. Schoelkopf, L. I. Glazman, M. H. Devoret
Phys. Rev. Lett. 113, 247001 (2014)

Wireless Josephson Amplifier (PDF)
A. Narla, K.M. Sliwa, M. Hatridge, S. Shankar, L. Frunzio, R. J. Schoelkopf, M.H. Devoret
Appl. Phys. Lett. 104, 232605 (2014)

Dynamically protected cat-qubits: a new paradigm for universal quantum computation (PDF)
M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, M. H. Devoret
New J Phys, 16, (2014); DOI 10.1088/1367-2630/16/4/045014.

Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles (PDF)
I.M. Pop, K. Geerlings, G. Catelani, R.J. Schoelkopf, L.I. Glazman, M.H. Devoret
Nature 508, 369–372 (2014) (reprint)

Josephson directional amplifier for quantum measurement of superconducting circuits (PDF)
B. Abdo, K. Sliwa, S. Shankar, M. Hatridge, L. Frunzio, R.J. Schoelkopf, M.H. Devoret
Phys. Rev. Lett. 112, 167701 (2014)


back

2013

Planar superconducting whispering gallery mode resonators (PDF)
Z. K. Minev, I. M. Pop, M. H. Devoret
Appl. Phys. Lett. 103, 142604 (2013)

Autonomously stabilized entanglement between two superconducting quantum bits (PDF)
S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, M. H. Devoret
Nature 504, 419–422 (2013)

Stabilizing a Bell state of two superconducting qubits by dissipation engineering (PDF)
Z. Leghtas, U. Vool, S. Shankar, M. Hatridge, S. M. Girvin, M. H. Devoret, and M. Mirrahimi
Phys. Rev. A 88, 023849 (2013)

Directional Amplification with a Josephson Circuit (PDF)
B. Abdo, K. Sliwa, L. Frunzio, M.H. Devoret
Phys. Rev. X 3, 031001 (2013)

Superconducting Circuits for Quantum Information: An Outlook (PDF)
M.H. Devoret and R.J. Schoelkopf
Science 339, 1169-1174 (2013)

Full Coherent Frequency Conversion Between Two Microwave Propagating Modes (PDF)
B. Abdo, K. Sliwa, N. Bergeal, M. Hatridge, L. Frunzio, A.D. Stone, M.H. Devoret
Phys. Rev. Lett. 110, 173902 (2013)

Three-wave Mixing with Three Incoming Waves: Signal-Idler Coherent Cancellation and Gain Enhancement in a Parametric Amplifier (PDF)
F. Schackert, A. Roy, M. Hatridge, A.D. Stone, M.H. Devoret
Phys. Rev. Lett. 111, 073903 (2013)

Demonstrating a Driven Reset Protocol for a Superconducting Qubit (PDF)
K. Geerlings, Z. Leghtas, I.M. Pop, S. Shankar, L. Frunzio, R.J. Schoelkopf, M. Mirrahimi, M.H. Devoret
Phys. Rev. Lett. 110 120501 (2013)

Quantum Back-Action of Variable-Strength Measurement (PDF)
M. Hatridge and S. Shankar, M. Mirrahimi, F. Schackert, K. Geerlings, T. Brecht, K.M. Sliwa, B. Abdo, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, M.H. Devoret
Science 339, 178-181 (2013) (abstract, reprint, fulltext)

Non-Degenerate, Three-Wave Mixing with the Josephson Ring Modulator (PDF)
B. Abdo, A. Kamal, M.H. Devoret
Phys. Rev. B 87, 014508 (2013)


back

2012

Mesoscopic resistor as a self-calibrating quantum noise source (PDF)
N. Bergeal, F. Schackert, L. Frunzio, D. E. Prober and M. H. Devoret
Appl. Phys. Lett. 100, 203507 (2012)

Gain, Directionality and Noise in Microwave SQUID Amplifiers: Input-Output Approach (PDF)
A. Kamal, J. Clarke, M.H. Devoret
Phys. Rev. B 86, 144510 (2012)

Microwave Characterization of Josephson Junction Arrays: Implementing a Low Loss Superinductance (PDF)
N. A. Masluk, I. M. Pop, A. Kamal, Z. K. Minev, M. H. Devoret
Phys. Rev. Lett. 109, 137002 (2012)

Improving the Quality Factor of Microwave Compact Resonators by Optimizing their Geometrical Parameters (PDF)
K. Geerlings, S. Shankar, E. Edwards, L. Frunzio, R.J. Schoelkopf, M.H. Devoret
Appl. Phys. Lett. 100, 192601 (2012)

Evidence for Coherent Quantum Phase Slips Across a Josephson Junction Array (PDF)
V. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. Glazman, M.H. Devoret
Phys. Rev. B. 85, 024521 (2012)


back

2011

Josephson Amplifier for Qubit Readout (PDF)
B. Abdo, F. Schackert, M. Hatridge, C. Rigetti, M.H. Devoret
Appl. Phys. Lett. 99, 162506 (2011)

Noiseless Nonreciprocity in a Parametric Active Device (PDF)
A. Kamal, J. Clarke, M.H. Devoret
Nature Physics 7, 311-315 (2011)


back

2010

Preparation and Measurement of Three-Qubit Entanglement in a Superconducting Circuit (PDF)
L. DiCarlo, M.D. Reed, L. Sun, B.R. Johnson, J.M. Chow, J.M. Gambetta, L. Frunzio, S.M. Girvin, M.H. Devoret, R. J. Schoelkopf
Nature 467, 574-578 (2010)

Fully Microwave-Tunable Universal Gates in Superconducting Qubits with Linear Couplings and Fixed Transition Frequencies (PDF)
C. Rigetti, M. H. Devoret
Phys. Rev. B. 81, 134507 (2010)

Exponential Quantum Enhancement for Distributed Addition with Local Nonlinearity (PDF)
A. Marblestone, M. H. Devoret
Journal of Quantum Information Processing 9, 47-59 (2010)

Phase Preserving Amplification Near the Quantum Limit with a Josephson Ring Modulator (PDF)
N. Bergeal, F. Schackhert, M. Metcalfe, R. Vijay, V. E. Manucharyan,
L. Frunzio, D. E. Prober, R. J. Schoelkopf, S. M. Girvin, M. H. Devoret
Nature 465, 64-68 (2010)

Analog information processing at the quantum limit with a Josephson ring modulator (PDF)
N. Bergeal, R. Vijay, V. E. Manucharyan, I. Siddiqi, R. J. Schoelkopf, S. M. Girvin and M. H. Devoret
Nature Physics 6, 296-302 (2010)


back

Before 2010

The Josephson Bifurcation Amplifier (PDF)
R. Vijay, M. H. Devoret, I. Siddiqi
Rev. Sci. Instrum. 80, 111101 (2009)

Amplification at the Quantum Limit with the Josephson Ring Modulator
B. Huard, N. Bergeal, M. H. Devoret
Proceedings of the Enrico Fermi School on Quantum Coherence in Solid State Systems,
IOS Press, Amsterdam, p. 151 (2009)

Charging Effects in the Inductively Shunted Josephson Junction (PDF)
J. Koch, V. E. Manucharyan, M. H. Devoret, L. Glazman
Phys. Rev. Lett. 103, 217004 (2009)

Coherent Oscillations Between Classical Separable Quantum States of a Superconducting Loop (PDF)
V. E. Manucharyan, J. Koch, M. Brink, L. Glazman, M. H. Devoret
cond-mat.mes-hall 0910.3039 (2009)

Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets (PDF)
V. E. Manucharyan, J. Koch, L. Glazman, M. H. Devoret
Science 326, 113-116 (2009).

Signal-to-pump backaction and self-oscillation in Double pump Josephson parametric amplifier (PDF)
A. Kamal, A. Marblestone, and M. H. Devoret
Phys. Rev. B 79, 184301 (2009)
(also selected for May 2009 issues of Virtual Journal of Quantum Information and Virtual Journal of Applications of Superconductivity)

Introduction to Quantum Noise, Measurement and Amplication (PDF)
A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf
cond-mat.mes-hall 0810.4729 (2008)
Rev. Mod. Phys. 81, 1155-1208 (2010)

A Cryoelectronics Sample Holder Design with Perpendicular Coaxial to Microstrip Transitions (PDF)
N. A. Masluk, V. E. Manucharyan, and M. H. Devoret
submitted (2008)

Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier (PDF)
M. Metcalfe, E. Boaknin, V. E. Manucharyan, R. Vijay, I. Siddiqi, C. Rigetti, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret
Phys. Rev. B 76, 174516 (2007)

Circuit-QED: How strong can the coupling between a Josephson junction atom and a transmission line resonator be? (PDF)
M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf
Annalen der Physik 16, 767 (2007)

Microwave bifurcation of a Josephson junction: Embedding-circuit requirements (PDF)
V. E. Manucharyan, E. Boaknin, M. Metcalfe, R. Vijay, I. Siddiqi, and M. H. Devoret
Phys. Rev. B 76, 014524 (2007)

Dispersive measurements of superconducting qubit coherence with a fast latching readout (PDF)
I. Siddiqi, R. Vijay, M. Metcalfe, E. Boaknin, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret
Phys. Rev. B 73, 054510 (2006)

Protocol for universal gates in optimally biased superconducting qubits (PDF)
C. Rigetti, A. Blais and M. H. Devoret,
Phys. Rev. Lett. 94, 240502 (2005) quant-ph/0412009.

Geometric Approach to Digital Quantum Information (PDF)
C. Rigetti, R. Mosseri, and M. H. Devoret
Quant. Infor. Proc. 3 No. 6 (2005) quant-ph/0312196.

Direct Observation of Dynamical Bifurcation between Two Driven Oscillation States of
a Josephson Junction (PDF)
I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, L. Frunzio, M. Metcalfe, C. Rigetti, R. J. Schoelkopf, and M. H. Devoret
Phys. Rev. Lett. 94, 027005 (2005) cond-mat/0312553.

Superconducting Qubits: A Short Review (PDF)
M. H. Devoret, A. Wallraff, and J. M. Martinis
cond-mat/0411.174 (2004)

RF-Driven Josephson Bifurcation Amplifier for Quantum Measurement (PDF)
I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, and M. H. Devoret
Phys. Rev. Lett. 93, 207002 (2004) cond-mat/0312623.

Implementing Qubits with Superconducting Integrated Circuits (PDF)
M. H. Devoret and J. M. Martinis
Quant. Infor. Proc. 3 Nos. 1-5, (2004).

Manipulating the Quantum State of an Electrical Circuit (PDF)
D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H. Devoret
Science 296, 886-889 (2002).


back

Archives

Rabi oscillations, Ramsey fringes and spin echoes in an electrical circuit (PDF)
D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H. Devoret
Fortschr. Phys. 51, No. 4-5, 462-468 (2003).

Proximity Effect and Multiple Andreev Reflections in Gold Atomic Contacts (PDF)
E. Scheer, W. Belzig, Y. Naveh, M. H. Devoret, D. Esteve, and C. Urbina
Phys. Rev. Lett. 86, 284-287 (2001).

Electrodynamic Dip in the Local Density of States of a Metallic Wire (PDF)
F. Pierre, H. Pothier, P. Joyez, N. O. Birge, D. Esteve, M. H. Devoret
Phys.Rev. Lett. 86, 1590-1593 (2001).

Multiple Andreev Reflections Revealed by the Energy Distribution of Quasiparticles (PDF)
F. Pierre, A. Anthore, H. Pothier, C. Urbina, and D. Esteve
Phys. Rev. Lett. 86, 1078-1081 (2001).

Direct Measurement of the Josephson Supercurrent in the Ultrasmall Josephson Junction (PDF)
A. Steinbach, P. Joyez, A. Cottet, D. Esteve, M. H. Devoret, M. E. Huber, and J. M. Martinis
Phys. Rev. Lett. 87, 137003 (2001).

Amplifying quantum signals with the single-electron transistor (PDF)
M. H. Devoret and R. J. Schoelkopf
Nature 406, 1039-1046 (2000).

Supercurrent in Atomic Point Contacts and Andreev States (PDF)
M. F. Goffman, R. Cron, A. Levy Yeyati, P. Joyez, M. H. Devoret, D. Esteve, and C. Urbina
Phys. Rev. Lett. 85, 170-173 (2000).

Controlled deposition of carbon nanotubes on a patterned substrate (PDF)
K. H. Choi, J. P. Bourgoin, S. Auvray, D. Esteve, G. S. Duesberg, S. Roth, and M. Burghard
Surf. Sci. 462, 195-202 (2000).

The Josephson effect in nanoscale tunnel junctions (PDF)
P. Joyez, D. Vion, M. Gotz, M. H. Devoret, and D. Esteve
J. Supercon. 12, 757-766 (1999)

Evidence for Saturation of Channel Transmission from Conductance
Fluctuations in Atomic-Size Point Contacts (PDF)
B. Ludoph, M. H. Devoret, D. Esteve, C. Urbina, and J. M. van Ruitenbeek
Phys. Rev. Lett. 82, 1530-1533 (1999).

Quantum Coherence with a Single Cooper Pair (PDF)
V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. H. Devoret
Physica Scripta T76, 165-170 (1998).

How Is the Coulomb Blockade Suppressed in High-Conductance Tunnel Junctions? (PDF)
P. Joyez, D. Esteve, and M. H. Devoret
Phys. Rev. Lett. 80, 1956-1959 (1998).

Conduction Channel Transmissions of Atomic-Size Aluminum Contacts (PDF)
E. Scheer, P. Joyez, D. Esteve, D. Urbina, and M. H. Devoret
Phys. Rev. Lett. 78, 3535-3538 (1997).

Conductance Fluctuations in a Metallic Wire Interrupted by a Tunnel Junction (PDF)
A. van Oudenaarden, M. H. Devoret, E. H. Visscher, Yu. V. Nazarov, and J. E. Mooij
Phys. Rev. Lett. 78, 3539-3542 (1997).

Energy Distribution Function of Quasiparticles in Mesoscopic Wires (PDF)
H. Pothier, S. Gueron, N. O. Birge, D. Esteve, and M. H. Devoret
Phys. Rev. Lett. 79, 3490-3493 (1997).

Strong Tunneling in the Single-Electron Transistor (PDF)
P. Joyez, V. Bouchiat, D. Esteve, C. Urbina, and M. H. Devoret
Phys. Rev. Lett. 79, 1349-1352 (1997).

Observation of Hot-Electron Shot Noise in a Metallic Resistor (PDF)
A. H. Steinbach, and J. M. Martinis
Phys. Rev. Lett. 76, 3806-3809 (1996).

Superconducting Proximity Effect Proved on a Mesoscopic Length Scale (PDF)
S. Gueron, H. Pothier, N. O. Birge, D. Esteve, M. H. Devoret
Phys. Rev. Lett. 77, 3025-3028 (1996).

Thermal Activation above a Dissipation Barrier: Switching of a Small Josephson Junction (PDF)
D. Vion, M. Gotz, P. Joyez, D. Esteve, and M. H. Devoret
Phys. Rev. Lett. 77, 3435-3438 (1996).

Quantum Fluctuations in Electrical Circuits (PDF)
M. H. Devoret
Les Houches Session LXIII, Quantum Fluctuations p. 351-386 (1995).

Single Electron Phenomena in Metallic Nanostructures (PDF)
M. H. Devoret, D. Esteve, and C. Urbina
Les Houches Session LXI, Mesoscopic Quantum Physics, p. 605-658 (1995).

Effect of a Transmission Line Resonator on a Small Capacitance Tunnel Junction (PDF)
T. Holst, D. Esteve, C. Urbina, and M. H. Devoret
Phys. Rev. Lett. 73, 3455-3458 (1994).

Flux-Modulated Andreev Current Caused by Electronic Interference (PDF)
H. Pothier, S. Gueron, D. Esteve, and M. H. Devoret
Phys. Rev. Lett. 73, 2488-2491 (1994).

Observation of Parity-Induced Suppression of Josephson Tunneling in the Superconducting Single Electron Transistor (PDF)
P. Joyez, P. Lafarge, A. Filipe, D. Esteve, and M. H. Devoret
Phys. Rev. Lett. 72, 2458-2461 (1994).

Two-electron quantization of the charge on a superconductor (PDF)
P. Lafarge, P. Joyez, C. Urbina, and M. H. Devoret
Nature 365, 422-424 (1993).

Even-odd symmetry breaking in the NSN Coulomb blockade electrometer (PDF)
T. Eiles, J. Martinis, and M. H. Devoret
Physica B 189, 210-217 (1993).

Even-Odd Asymmetry of a Superconductor Revealed by the Coulomb Blockade of Andreev Reflection (PDF)
T. M. Eiles, J. M. Martinis, and M. H. Devoret
Phys. Rev. Lett. 70, 1862-1865 (1993).

Measurement of the Even-Odd Free-Energy Difference of an Isolated Superconductor (PDF)
P. Lafarge, P. Joyez, D. Esteve, C. Urbina, and M. H. Devoret
Phys. Rev. Lett. 70, 994-997 (1993).

Direct observation of macroscopic charge quantization: a Millikan experiment in a submicron solid state device. (PDF)
P.Lafarge, P. Joyez, H. Pothier, A. Cleland, T. Holst, D. Esteve, C. Urbina, and M. H. Devoret
C. R. Acad. Sci. Paris, t. 314, Series II, 883-888 (1992).

Single-Electron Pump Based on Charging Effects (PDF)
H. Pothier, P. Lafarge, C. Urbina, D. Esteve, and M. H. Devoret
Europhysics Letters 17(3), 249-254 (1992).

Effect of the Electromagnetic Environment on the Coulomb Blockade in Ultrasmall Tunnel Junctions (PDF)
M. H. Devoret, D. Esteve, H. Grabert, G.-L. Ingold, H. Pothier, and C. Urbina
Phys. Rev. Lett. 64, 1824-1827 (1990).

Frequency-Locked Turnstile Device for Single Electrons (PDF)
L. J. Geerligs, V. F. Anderegg, P. A. M. Holweg, J. E. Mooij, H. Pothier, D. Esteve, C. Urbina, and M.H. Devoret
Phys.Rev. Lett. 64, 2691-2694 (1990).

Reply to Silvestrini (PDF)
J. Clarke, J. M. Martinis, and M. H. Devoret
Phys. Rev. Lett. 63, 212 (1989).

Escape Oscillations of a Josephson Junction Switching Out of the Zero-Voltage State (PDF)
E. Turlot, D. Esteve, C. Urbina, J. M. Martinis, M. H. Devoret
Phys. Rev. Lett. 62, 1788-1791 (1989).

Energy-Level Quantization in the Zero-Voltage State of a Current-Biased Josephson Junction (PDF)
J. M. Martinis, M. H. Devoret, and J. Clarke
Phys. Rev. Lett. 55, 1543-1546 (1985).

Measurements of Macroscopic Quantum Tunneling out of the Zero-Voltage State of a Current-Biased Josephson Junction (PDF)
M. H. Devoret, J. M. Martinis, J. Clarke
Phys. Rev. Lett. 55, 1908-1911 (1985).

Resonant Activation from the Zero-Voltage State of a Current-Biased Josephson Junction of a Current-Biased Josephson Junction (PDF)
M. H. Devoret, J. M. Martinis, D. Esteve, and J. Clarke
Phys. Rev. Lett. 53, 1260-1263 (1984).


back

Talks & Posters

YINQE Seminar, Yale University Autonomous stabilization of an entangled state of two transmon qubits (PDF)
S. Shankar (2013)

2010 APS March Meeting Tutorial on Advances in Josephson Quantum Circuits (PDF)
M. Devoret (2010)

2009 APS March Meeting Tutorial on Superconducting Qubit Circuits and their Readout (PDF)
M. Devoret (2009)

Measuring a Quantronium Qubit with a Cavity Bifurcation Amplifier (PDF)
M. Metcalfe (2006)

Metastable states in an RF driven Josephson oscillator (PDF)
R. Vijayaraghavan (2006)

NMR-Style Quantum Gates for Superconducting Artificial Molecules (PDF)
C. Rigetti, A. Blais and M. Devoret (2005)

Amplifying signals with Josephson Bifurcation Amplifiers (PDF)
Irfan Siddiqi (2004)

Resources and Links

Diversity and Code of conduct

Code of conduct adapted from the Clef code of conduct

Diversity statement adapted from the APS diversity statement

Yale University Links

Yale University Home Page

Applied Physics Department

Physics Department

School of Engineering and Applied Sciences

Yale Quantum Institute

Condensed Matter Theory Group

Yale Institute for Nanoscience and Quantum Engineering

The SEAS Cleanroom

Collaborators at Yale

Steve Girvin Home Page

Leonid Glazman Home Page

Shruti Puri Research Group

Peter Rakich Lab

Rob Schoelkopf Lab

Outside Collaborators

Collège de France / ENS-LPA, Paris, France

Quantronics Group, Saclay, France

MIT Lincoln Lab, Boston, USA

NIST Advanced Microwave Photonics Group, Boulder, USA

Geresdi Lab, Chalmers University, Sweden

Center for Quantum Devices, University of Copenhagen, Denmark

Other Resources and Yale Seminars

YQI Seminars

Yale Physics Seminars

Join us

Explore the world of mesoscopic electronics!

We’re always seeking talented and motivated students and postdocs. If you are interested in becoming a Qlab researcher, please contact Prof. Michel Devoret or any of our group members directly. Students interested in Ph.D. research can apply to either the Physics or Applied Physics graduate program (see links page)

    • Email Address

    • <first name>.<last name>@yale.edu

Address for Visitors and Shipping

    • Yale University, Applied Physics
      15 Prospect Street
      Becton Center 401
      New Haven, CT 06520-8284

Mailing Address

    • Yale University, Applied Physics
      PO Box 208284
      New Haven, CT 06520-8284

Transportation Information for Visitors

  • Click on the banner below

Tutorial

Quantum Circuits

Superconducting Circuits for Quantum Information: An Outlook

The performance of superconducting qubits has improved by several orders of magnitude in the past decade. These circuits benefit from the robustness of superconductivity and the Josephson effect, and at present they have not encountered any fundamental physical limits. However, building an error-corrected information processor with many such qubits will require solving specific architecture problems that constitute a new field of research. For the first time, physicists will have to master quantum error correction to design and operate complex active systems that are dissipative in nature, yet remain coherent indefinitely. We offer a view on some directions for the field and speculate on its future.

John Stewart Bell Prize 2013 Lecture

“John Bell’s discovery that entanglement had experimentally testable consequences opened a new experimental field in which the boundaries of validity of quantum mechanics would be explored as far as current technology would permit. One new direction was proposed at the beginning of the 80’s by Tony Leggett (recipient of the 2003 Nobel Prize in Physics): test the application of quantum mechanics to collective electrical variables of radio-frequency circuits, like macroscopic currents and voltages. In circuits that are purely linear, like an inductance-capacitance (LC) harmonic oscillator, the difference between classical and quantum behavior is very subtle and is hard to observe if one does not introduce a non-linear element…”

Qlab

Welcome to Quantronics Laboratory!

Quantronics Laboratory (Qlab) explores the world of mesoscopic electronics. Our present focus is on quantum superconducting tunnel junction circuits and their applications to information processing. In these systems, macroscopic collective degrees of freedom like currents and voltages behave quantum-mechanically. Our experimental techniques combine nanofabrication, dilution refrigeration and ultra-low-noise microwave measurements.

More Details

 

Devices

Our research aims to observe and harness novel quantum mechanical effects (quantum error correction and stabilization of quantums states by feedback, for instance) through the design, fabrication, and microwave measurement of the following superconducting electrical circuit devices:

3D Transmon Qubit

This device consists of a small Josephson junction connected to a microwave antenna in the middle of a 3D cavity resonator. The 3D Transmon is an artificial atom behaving as a slightly anharmonic oscillator. Its long coherence time and simple fabrication makes it a popular superconducting qubit.

    

Fluxonium Qubit

This other superconducting artificial atom used in the group has a richer level structure than the transmon, but contains of order 100 Josephson junctions. It relies on an array of large Josephson junctions behaving as a superinductance, i.e. superconducting inductance whose impedance is larger than the resistance quantum. The superinductance shunts a small junction, preventing the deleterious effect of charge offsets, yet allowing quantum phase fluctuations to express themselves. The relaxation time of the fluxonium is even larger than that of the transmon due to the particular nature of its energy eigenfunctions.

Josephson Parametric Converter (JPC)

This device is based on the Josephson Ring Modulator which is a loop of four Josephson junctions threaded by an external flux. The four nodes between junctions are connected to four quarter wave transmission lines. The JPC is used in our group as a quantum limited phase-preserving amplifier, i.e. an amplifier working essentially as an op-amp for microwave signals. We use it as a pre-amplifier in the readout chain of superconducting qubits.

Josephson Bifurcation Amplifier (JBA)

This device is based on a DC SQUID ring consisting of two Josephson junctions in parallel threaded by an external flux. The junctions are shunted by an external capacitance determining the resonant frequency of the device. The JBA is used in our group as a quantum limited phase-sensitive amplifier, i.e. an amplifier that increases one quadrature of the signal at the expense of the other quadrature. We use it as an eraser of quantum information for preparing particular quantum states.